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The first paper of Boltzmann on the subject (1866):

Second Law ←→ Least Action

Initial: T is the average kinetic energy + second law

New ideas

1) Motion of given energy is periodic

2) Thermodynamic equilibrium state identified with collec-

tion of values which are the average values of the observables

3) Use least action principle to compare averages

‘ Extension of the Least action: comparison btw averages

performed by calculus of variations
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1) ⇒ is essentially the ergodic hypothesis and

2) ⇒ associates with a therm. state a probability distribu-

tion (fraction of time spent on set)

3) ⇒ The least action varies, comparing two periodic orb.

of periods i and i+δi, from δ(K−V ) = 0 for fixed extremes

and potentials V and V + δṼ

δ(K − V ) = −2K δ log i+ δṼ

which implies that T = K is the integrating factor of

δ (K + V ) + δW = 2K δ log(iK)

where δW = −δṼ is interpreted as the work done.

dU + dW

K
= d 2 log(iK)
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This looks easy: however B.’s argument is difficult to follow:

in fact interpreting the formulae is necessary.

The technique is calculus of variation which B. uses freely,

“exchanging d’s and δ’s”.

The proof is that Clausius, four years later, derived the

result in the above form without knowing B.’s paper.
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Obliged to respond to angry B., points out that the works

would coincide IF symbols were properly interpreted. For

C. comparison not possible due to ambiguities in definitions.

More: B. does not allow variations δṼ of V ; so considers

very special transf.: in a gas they would be isovolumic (no

change of the volume: and in this case the second law would

be trivial). In C.’s approach V can change.

He points that ONCE everything clearly defined the change

is trivial. B. did not take advantage of this and promises to

take δṼ into account in future.
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Interesting that Boltzmann, Clausius, Maxwell did not hes-

itate to think motion as periodic. Sheepishly B. says in

1866 “aperiodic motion can be regarded as periodic with

infinite period”, Clausius tries to argue that periodicity is

not necessary and his theorem can be extended to the case

in which atoms can be divided into groups each moving pe-

riodically even with different periods as long as the number

of such groups is very large.

This is natural if one keeps in mind the Ptolemaic concep-

tion of motion as composed by periodic motions (deferents

and epicycles): chaos was not yet dominant.
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Clearly there was a problem, however. Periodic motion

going through all possible states could be maintained only

if phase space was discrete.

But Boltzmann considered integrals and derivatives as (con-

venient) approximations of sums and differences (unlike

most of us, biased by social pressure).
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Manifestly unhappy about his early way out came back to

the question repeatedly trying to free his analysis from too

detailed assumptions on microscopic motion.

Published what I call the “trilogy” in 1871: still imagin-

ing microscopic states as going through all possible states,

concentrates on deriving the probability distributions with-

out any assumption other than that the atoms were bound

into molecules each of which, if unperturbed, going through

all possible states, but occasionally jumping from one state

to another due to a binary collision. This led him to the

following results:
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1) discover the canonical distribution for gases of poliatomic

molecules (Maxwell had treated the monoatomic gases)

2) imagine a system of interacting atoms as a giant molecule

and derive the canonical distribution of the small subsys-

tems from the microcanonical one for the total system

3) obtain results by only examining the collisions kinemat-

ics: arriving essentially to the B. equation, published in

1872
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The 2d of the 3 papers is quoted by Gibbs as deduction of

canonical and microcanonical ensembles. Curiously Gibbs

quotes the paper with the obscure title of its first section:

referring to the “Jakobi principle of the last divisor”.

After some effort it appears that this refers to the fact that

several changes of variables are involved in the discussion:

and the integrals change correspondngly via the introduc-

tion of a factor that we call today the “Jacobian”. The lat-

ter is often just 1 because the transformations considered by

B. are canonical. However B. does not seem familiar with

the concept and spends several pages in several papers to

check the property.
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But the question of the periodicity kept bothering him: it

made his derivation still resting on an hypothesis: that

there are no other constants of motion besides the energy.

Of course this is again related to the ergodic hypothesis.

After the Loschmidt objection to the Boltzmann equation,

in 1877, B. answers by stating that it gives the correct evo-

lution because every other is exceedingly improbable (al-

though not impossible). A new breakthrough.
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In the same paper of “remarks” B. makes the statement

that the probabilistic interpretation leads naturally to an

“interesting derivation of the equilibrium properties”.

A second remark is an explicit derivation of the second law

in a case in which the periodicity assumption holds. This

would be a curiosity: but it will become very important a

few years later.

It realizes an explicit example of the general theory of the

connection between the second law and the variational prin-

ciples.

11



Consider a 1-dim. conservative sys., potential ϕ(x)

|ϕ′(x)| > 0 for |x| > 0, ϕ′′(0) > 0 and ϕ(x)−−−→x→∞ +∞.

Suppose ϕ(x) to depend on a parameter V . “a state” is a

motion with given parameters E = U and V . Let

U = total energy of the system ≡ K + ϕ

T = time average of the kinetic energy K

V = the parameter on which ϕ is supposed to depend

p = − average of ∂V ϕ.

If parameters change by dU, dV let:

dL = −pdV, dQ = dU + pdV . Then

Theorem: The differential (dU + pdV )/T is exact.
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Proof: let x±(U, V ) be the extremes of the oscillations of

the motion (given U, V ) and define S as:

S =2 log

∫ x+(U,V )

x
−
(U,V )

√
K(x;U, V )dx

≡2 log

∫ x+(U,V )

x
−
(U,V )

√
U − ϕ(x)dx

so that

dS =

∫ (
dU − ∂V ϕ(x)dV

)
dx√
K∫

K dx√
K

since dx√
K

=
√

2
m
dt the time averages are given by integrat-

ing with respect to dx√
K

and dividing by the integral of 1√
K
.

⇒ dS = dU+pdV

T
.
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B. comes back immediately, still in 1877, on the statement

that the Loschmidt paradox can lead to a new derivation of

the equilibrium distributions.

He takes complete advantage of his discrete conceptions of

space, time, integrals and derivatives and shows that the

equilibrium distribution (in its canonical and microcanon-

ical form) follow from a simple combinatorial count of the

different possible locations of the molecules into small cells

into which space is imagined decomposed.
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The method is the same thence used by Planck and in the

derivation of the quantu statistics (of course it leads to what

we call the Boltzmann-Maxwell distribution). In this paper

the formula for the entropy S = kB logW appears.
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The ergodic hypothesis remains still such: perfectly mean-

inglul in a context in which the phase space is discrete.

But a new idea emerged: the equilibrium distributions can

be characterized without appealing to the detailed dynam-

ics.

It becomes therefore natural to ask whether there exist

other distributions which are invariant and which have the

property that dU + pdV = T · (exact differential).
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Little later, 1884, several events conspire to build a new

viewpoint. Helmholtz remarks, in four long papers, that one

can define “models of Thermodynamics” in systems that are

monocyclic.

Systems of one or more particles all moving independently

with periodic motion of equal period. Helmotltz shows how

to define U, p, V, T with U equal to the energy per particle,

V a parameter on which the potential ϕ of the forces acting

on the system depend, p = −〈∂V ϕ〉, T = (average kinetic

energy) so that dU+pdV

T
is an exact differential.
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This is clearly already in B. at least since the first quoted

paper of 1877. In 1884 B. had been invited to go to work

in Berlin by Helmholtz: this might explain why instead

of being angry he writes instead a long paper discussing

further properties of monocyclic systems.

Collections of equilibrium states are identified with collec-

tions of as twenty years earlier with Clausius as twenty years

earlier with Clausius time invariant prob. distrib: called

monodes.
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Then a monode is an orthode if there are averages of suitable

mechanical quantities to be called U, V, p, T with T equal to

the average kin. energy so that by changing the parameters

on which the states depend the variations dU, dV of U, V

are such that dU+pdV

T
is an exact differential.
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He then proceeds to show that the collection of

1. the canonical distributions µc, called holode, is orthodic

2. so for the microcanonical distr. µmc, called ergode,

if one takes as U, V the average of the energy and the vol-

ume, defining the work done by the system by the variation

of the average of potential energy V .
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This is a general foundation of ensembles theory: it com-

pletes the B.’s program to find the mechanical interpreta-

tion of the second fundamental theorem.

The program had been essentially completed in the “tril-

ogy” of 1871: the works of Helmholtz have been of stimulus

to formalize the theory and cast it in the form in which we

use it today.

A thermodynamics model, properly defining U, p, V, T, S,

holds for “all mechanical systems”: from a pendulum to

a gas of 1019 molecules. Is it the thermodynamics of the

system under consideration?
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B. shows that: yes it is if the states are described by the

holede or he ergode (and possibly by many other orthodic

ensembles) provided the system is ergodic.

The latter property is necessary in order to identify the

mathematically defined averages with respect to time evo-

lution with the microcanonical averages and hence with the

canonical ones.
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The same approach is being attempted in the theory of sta-

tionary states out of equilibrium: are there relations valid

for “all systems” which might be trivial for simple systems

(as is the heat theorem for one dimensional systems) but

which become interesting and useful for systems of many

molecules?

It led to an extension of the ergodic hypothesis (into the

chaotic hypothesis) and to the derivation of various identi-

ties among which a prominent role is plaid by the fluctua-

tion theorem.
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