
Chaotic hypothesis and coarse graining

(http://ipparco.roma1.infn.it)

In complex systems (gases, fluids) motions are as a rule chaotic. This

means that not only: limt→∞
1
t

∑t
j=1 F (Sjx) exists for a.a. x but

lim
t→∞

1

t

t∑

j=1

F (Sjx) =

∫
F (y)µ(dy)

The dist. probab. on phase space µ describes a state. If evolution S is

not Hamilt. µ is a nonequilibrium stationary state.

Example 1: Drude’s Model (1899)

Example 2: Heat conduction.

16/marzo/2008; 23:14 1



~E
periodic b.c. (“wire”)

mẍ = E + collision rule

elastic + rescal. velo. to |ẋ| =
√

3
m

kBT

El. Cond.

Problem: 〈ẋ〉 = cE ? (Ohm). Theorem if N = 1 (CELS).

T1 T2

Term. Cond.

Fourier law? Open problem with conjectures (no?)
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A general thermostat model

X0,X1, . . . ,Xn

Ẍ0i=−∂iU0(X0)−
∑

j
∂iUj(X0,Xj)+Ei(X0)

Ẍji=−∂iUj(Xj)−∂iUj(X0,Xj)−αjẊji

T1

T2

T3

C0

mẊ2
j

2
=

3

2
kBTj Nj , Qj = −Ẋj · ∂Xj

Uj(X0,Xj)

αj =
Qj + U̇j

3kBTjNj

Efficient? when? Phase Volume contraction ⇒ divergence

σ = ε + V̇ , ε
def
=

∑

j≥1

Qj

kBTj

, V
def
=

∑

j≥1

Uj

kBTj
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Kinetic interpretation of entropy creation:

S − E
def
=

1

τ

∫ τ

0

σ dt−
1

τ

∫ τ

0

ε dt = V (τ)−V (0)
τ

−−−→τ→∞ 0

E and S have intrinsically equal average 〈ε〉 ≡ 〈σ〉 ⇒ (τ →∞)

equal statistics for p = E
〈ε〉 and p′

def
= S

〈σ〉 .

Nonsense to attribute any meaning to V : ε has physical meaning and can

be measured. V is arbitrary (coordinate dependent!)

Chaotic Hypothesis:

The attractor for mechanical systems is hyperbolic, regular, transitive

Analogous to the Ergodic Hypotesis (which it implies): µ = SRB.
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Coarse graining and SRB

CH ⇒ Coarse grainining can be made precise !

CH ⇒ symbolic dynamics. ∃ E = (E0, . . . , Eq) partition of phase space

with “transition” or “compatibility” matrix

Mξξ′ = 1, if SE0
ξ ∩E0

ξ′ 6= ∅, = 0 otherwise

transitive (M ℓ
ξξ′ > 0). Call Eξ “coarse cells”.

Mξξ′ = 1

Eξ Eξ′

SEξ→
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(a) If ξ = (. . . , ξ−1, ξ0, ξ1, . . .), Mξi ξi+1
≡ 1 ←→ ∃x and Six ∈ Eξi .

(b) If ξ, ξ′ corresp. x, x′ and agree between −τ e τ ⇒ d(x, x′) ≤ Ce−λτ

(c) Eξ is foliated by Ws (Wi), smooth & connected, with histories even-

tually equal in the future (past) and x, y ∈Ws ⇒ d(Snx, Sny) ≤ Ce−τλ.

(d) If x, y ∈ Eξ ⇒ z = Wi(x) ∩Ws(y) ⇒ d(Sky, Skz)−−−→
k→∞

0 exponent.

x

y

z

Wi is asymptotically attracting while its surface is expanded.
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Let τ so large that all interesting observ. F are constant in the cells

(ξ̃
def
= (ξ−τ , . . . , ξτ ))

E(ξ̃)
def
= SτEξ−τ

∩ Sτ−1Eξ−τ+1
∩ . . . ∩ S−τEξτ

= “coarse cells”

Problem: time evolution cannot be a permutation (cells too large)

Imagine phase space discretized (Boltzmann) in microcells.

As in simulations: point → 64 bits per each of the N coordinates: 264N .
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The set A of recurrent points is the attractor. Transitivity (generalization

of “ergodic hypothesis”) ⇒ 1-cycle permutation.

The attractor is still expanding: if x ∈ E(ξ̃) prefixed, let

Λi(ξ̃) = |det ∂S2τ (ξ̃)i|

the expns. coeff. of surface Wi(x) for S2τ (as map of S−τx into Sτx).

Then its points are spread over a surface larger by a factor Λi(ξ̃).

nevertheless all microcells are changed into others which already exist

and dynamics just permutes the microcells.

Transitivity ⇒ cycle is just one cycle: hence 〈F 〉 is computed

〈F 〉 =

∑
ξ̃
N (ξ̃)F (ξ̃)

∑
ξ̃
N (ξ̃)

with a uniform distribution!
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In the discrete representation A appears, in each coarse cell, as a family

of points regularly arranged on a finite number of unstable manifolds

The number N (ξ̃) is subject to a strong compatibility constraint as no

microcells must be generated in spite of the strong expansion Λ(ξ̃).

Compatibility⇒ N (ξ̃) = costΛi(ξ̃)−1

hence the SRB distribution is

〈F 〉 =

∑
ξ̃
e−λi(̃ξ)F (ξ̃)

∑
ξ̃
e−λi(̃ξ)

, λi(ξ̃)
def
= log Λi(ξ̃)
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Applications? Fluctuation theorem [CG] (very different from Evans-

Searles), Onsager reciprocity, Green-Kubo.

If evolution is reversible (as in above models) ∃I such that I2 = 1, IS =

S−1I. Then λi(I ξ̃) = −λs(ξ̃). Hence if p = 1
τ

∑τ−1
j=0

σ(Sjx)
σ+

, σ+ = 〈σ〉 > 0

Pτ (p)

Pτ (−p)
=

∑
ξ̃,p fixed

e−λi(̃ξ)

∑
ξ̃,−p fixed

e−λi(̃ξ)
=

∑
ξ̃,p fixed

e−λi(̃ξ)

∑
ξ̃,p fixed

e−λi(Iξ̃)
=

∑
ξ̃,p fixed

e−λi(̃ξ)

∑
ξ̃,p fixed

eλs (̃ξ)

= eτ p σ+ because −λi(ξ̃)− λs(ξ̃) = pσ+τ, ∀p ∈ (−p∗, p∗).

This is a large deviations theorem (Fluct. Theorem).

no parameters, model independent (provided reversible).
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Comments

(1) Verifiable in simulations and, in principle, in experiments, because

of the interpretation of σ as entropy creation rate: provided care is paid

to perform the experiments on a time small compared to the time scale

where friction becomes relevant and reversibility is lost unless a detailed

understanding of the dissipation is undertaken.

(2) Once more it appears that the unphysical difference between the

mathematical notion of phase space contraction and the physically mea-

surable entropy creation rate is not relevant as the result holds for ε.

(3) Even when V is unbounded (as it can in some models) the FT has been

formulated timed observations, i.e. for maps. And of course observations

are always timed at events which are not singular.
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