
On the physical significance of finite thermostats

Nonequilibrium: stationary states of particles subject to non conservative
forces whose work is dissipated in thermostats.

Problem: simulations → finite systems which however cannot be Hamilton-
nian.

“Solution”: introduce artificial forces which absorb energy, and allow reaching
stationarity

Question: is this OK ? are physical properties altered? can there be equiva-
lence between artificial non Hamiltonian thermostats and infinite Hamiltonian
thermostats?
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Example: Uj , U0,j pair int., short range

x = (X0, Ẋ0,X1, Ẋ1, . . . ,Xn, Ẋn)

Ẍ0i =− ∂iU0(X0)−
∑
j>0

∂iU0,j(X0,Xj) + Fi(X0)

Ẍji =− ∂iUj(Xj)− ∂iU0,j(X0,Xj)− aαjẊji, a = 0, 1

Particles move in containers bounded by a sphere Λ of radius R and, for a = 1,
αj are multipliers to impose Isokinetic or Isoenergetic

Ẋ2
j

2
≡ 3Nj

2
kBTj , or

Ẋ2
j

2
+ Uj(Xj) ≡ Ej

and a = 0 corresponds to the Hamiltonian dynamics
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Initial data chosen (for instance) w.r. to Gibbs distribution

µ0 = lim
Λ→∞

c e−H0(x)
∏
j
dXjdẊj

Nj ! , H0(x) =
∑n
j=0 βj

(
Ẋ2

j

2 +Uj(Xj)− λjNj
)

Choosing x with µ0 gives an infinite configuration with well defined temper-
ature, energy density ej , density δj to each thermostat.
The x evolves x→ S

(Λ,1)
t x ignoring the particles outside Λ.

Idea: If Λ large a simulation with the finite thermost. dynamics gives motions
very close to those of the infinite thermostats with µ0–prob. 1. The latter
is defined as x→ S

(0)
t x = limΛ S

(Λ,0)
t x

The limits of the finite volume dynamics should exist and with and without
thermostat forces and the energy per particle, the density, and the kinetic
energy per particle should be constants of motion with probability 1.
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Local dynamics S(Λ,a)
t x is such that each particle has finitely many collisions

with the walls fot t′ <≤ t (≤ νi(x, t), ∀Λ, a = 0, 1). And the limits S(a)
t x exist

with µ0 probability 1 and the energy density and the density in a ball B(ξ, ρ)
is bounded if ρ > log+ |ξ| while the global quantities are constant, for all t,

Nj(x(Λ,a)(t))
|Λ∩Cj | −−−−→

Λ→∞ δj ,
Uj(x(Λ,a)(t))
|Λ∩Cj | −−−−→

Λ→∞ uj ,
Kj(x(Λ,a)(t))
|Λ∩Cj | −−−−→

Λ→∞
3kBTj δj

2 ,

Theorem For any fixed t the a–independent limit exists

lim
Λ→∞

S
(Λ,a)
t x = S

(0)
t x, a = 0, 1

This means that for Λ large the two dynamics become identical in spite of the
fact that the thermostatted is dissipative and the Hamiltonian is conservative.
BUT: have we lost the entropy production???
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If Qj
def
= Ẋj · ∂XjUj.0(Xj ,X0) is the heat

αj =
Qj − U̇j
3kBTjNj

, (i.k.) αj =
Qj

3kBTjNj
, (i.e.)

The entropy production is ε =
∑
j>0

Qj

kBTj
in the Hamiltonian case. The phase

space contraction is 0 in the Hamiltonian case and in the therm. cases is

σ(x) =
∑
j>0

Qj − U̇j
kBTj

, (i.k.) σ(x) =
∑
j>0

Qj
kBTj

, (i.e.)

Hence σ and ε are identified (additive time derivatives do not count).
How is this possible: αj −−−−→Λ→∞ 0 but σ '

∑
3Njαj does not: like the energy

in mean field models. Proof:

x
(Λ,a)
i (t) = xi(0) + e

−
∫ t

0
aαj(t′)dt′

ẋi(0) +
∫ t

0

dt′′e
−
∫ t

t′′
aαj(t′)dt′

Fi(t′′)dt′′

and αi−−−−→Λ→∞ 0 for all j ⇒ the limits x(a)
i (t) satisfy the same equations.
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