Fluctuations and frictionless thermostats
in nonequilibrium statistical mechanics

by Errico Presutti, GG

Thermostat models (Feynman-Vernon 1963): finite system in
contact with infinite. Examples
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Equations

mXoi = — 0;Up(Xo) — Y _ 0;Us j(Xo, Xj) + ®i(Xo) + 9 W(X
Jj>0

ij; = — 8,-Uj(Xj) — 8,'U0J(X0,Xj) -+ 8;W(Xj)

j)

UX)= Y ola—4d), ¥(X)=> 4(q)

q,9'€X; qgeX

Upj(Xo, X)) = > wlqa—d),
q€Qo,q' €y

Initial state: infinite Gibbs;
With given chemical potentials A; and temperatures ,ijl
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No phase transitions = kinetic-potential energy density, density
and many observables constant with pg-probability 1 at time t =0

1 d
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Thermostats in thermodynamic limit:

Cut-off in a ball A, (side size 2"r,) then limit n — oo.

0 5(n0),

[Caglioti, Marchioro, Pulvirenti et al (2000)]

Time evolution St(



4 Thermostats have fixed

temperature, density, energy density at all times (actually expect
all intensive observables). In particular

- @y 91
A, |/\mQj|Kf”‘(5f x) =507

in absence of phase transitions (GP)

Entropy: thermostats entropy increases by

oo(x) = @

def v
=) = Qi = — X;j - 0x;Upj(Xo, X))
kT T e

W(x; &, R) % total energy + number of particles in ball B(&, R)

def : .
E(x) = SUPe SUPR (1og, (£ ))1/¢ W < 400 with po-prob. 1.

fp
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theorem 3C, c!: frictionless evolution of g;(0) € Ak (v =

1
2
3

(
(
(
(4

)
)
)
)

velocity < v C k1/2,
distance to walls > r, c k—3/2
interacting particles < C K3/4

X" (8) = xO(t)] < Crpe

Vn > k. The x)(t) is the unique solution of the frictionless
equations satisfying the bounds 1,2,3. (CMP,(GP))

m)
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Q1: is the temperature fixed for t > 0 7 are intensive quantities
constants of motion? (yes: (GP)).

Q2: Alternative models (A,—regularized): necessary for simulations

Simulations provided insights (Nosé, Hoover, Evans, Morriss,
Cohen) in 980-90’s,

Nonequilibrium statistical mech.: extending thermodynamics to
stationary states
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Chaotic hypothesis: motion is hyperbolic (Ruelle, Cohen-G)

Stationary states described by “ensembles” = families of stationary
distributions .

Look for universal properties: “model-independent relations
between averages”

Examples: equilibrium — Second law: M = “exact”

Onsager reciprocity (time reversal symmetry)
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Finite thermostats & Chaotic Hypothesis & Time reversal =

“Fluctuation theorem”: probability that (odd) observables F(x)
follow patterns ¢(t): F(Sex) = @(t) for t € [—47, 17] while

entropy production is s = 2= [7_o(Syx)dt satisfies

P(F(Sx) = o(t)ls)  _
PF(So) = (-0 —5) ™

1

Conditioned to given entropy production a “pattern” has the same
probability of the reversed “pattern” conditioned to the opposite
entropy production.

(Cohen-G,G)
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Amount of entropy production <— “arrow of time”

PIFS) =w(0ls)  _
PIF(So) = —o(-0)[—5) ™

To invert time “just” change the sign of s.

Origin: ((Sz)ze (Cohen,G):

FT is an extension of Onsager reciprocity and Green-Kubo (G)
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Finite thermostats. Equations in A,:

mXoi = — 0iUp(Xo) — Y _ 0iUp j(Xo, X;j) + ®i(Xo) + 9;¥(X;)

J>0
mXji = — 9;U;(X;) = 9;Uoj(Xo, X)) + V(X)) — aj,nXji

With «; , so fixed that Uja, + Kja, = Eja, is exact constant

def Qj def v
. g —X:-0:Un :(Xp. X:
Qj,n dekBT(X)’ QJ ) 8JUO:J( 0, J)
with mX? € 2K, (x) & d Njkg Tj(x)

Gauss least contraint ! Unphysical? can we change the mechanical
laws 7
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Equivalence? (required in thermodynamic limit A, — o0)
Idea: Q; e Xj - 0jUp j(Xo, X;) involves forces across the
boundary of test system = O(1) while N; = O(29") = volume(A,,)

Q;

aqj=—————— tendstoOas n—
J d Njkg Tj n(x)

“Mean field”. Problem: Butis Tj(x) > ¢ > 0 ?? (non-trivial)
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o <

deBTJ,,( x)

Theorem (Presutti, G): with po—probability 1

(a) yes: Lkg Tj(x)N; > %Njﬂj_l (hence o = 0).

(b) liMpse ST Vx = limp_ye0 SV x for all t > 0.

(c) 20l — o (x)ug(dx) and

ZkB +50(K0+U0+‘|’0)—00( ) + F(x)




13
Entropy production differs by a time derivative of a bounded
observable from the volume contraction:

= average of o = average of oy provided f;(x) is a constant of
motion as n — oo and £j(S5:x) = f;

In other words: very generally phase space contraction can be
identified with the physically defined entropy production.
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Method: “Entropy estimates’ for thermostatted motions

(I) Proof that kinetic energy per particle (in the A,—regularized
motion) stays > %Bj_l with pg-probability 1 for t < ©.

(I1) Proof that the number of particles and their (kinetic+wall)
energy in a unit box grows at most with a power vy € (%, 1) of

(log., ([€1/r,)) - (log n)
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This is based on combining an idea of Sinai, and one of Marchioro,
Pellegrinotti, Presutti, Pulvirenti (1975,1976), and Fritz-Dobrushin
(1976). Let

max( Nc€ (X),€C§ (x))
(log(&/rp))1/?

% maxen,
C¢= unit cube centered at ¢,
N, (x)= number of particles in C¢,
2. = maxgec, (1% + 1(q))

Ideas of the analysis follow.
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1) Define for x s.t. £(x) < E, the stopping time 7(x)

def

Ta(x) = max{t: t<O:Vr<t,
K; 7(_n,1) n
71’"(Z x) > k2", ||St( ’1)X||n < (logn)7}.
0

2) show that before reaching the stopping time the frictionless
evolution and the thermostatted evolution are very close for
particles starting within Ay provided the cut-off n > k.

3) Check that the pp-probability of B {x|x € Xg and
To(x) < O}is

po(B) < € e~cllogn™.

Via large deviations estimates. Key: entropy production is a
quantitative estimate of how far from invariant is ugo thus reducing
estimates to equilibrium estimates (GP).



17 Estimate the probability of X, % {£(x) < E; Th(x) < ©}.
From (2) derive a bound on the max entropy production within the
stopping time as |fT"(X S("’l)x)dt| < C'" with C' depending
only on E.

For inst. estimate probab. that kinetic energy becomes smaller
than 1/2 of its pp-almost sure asympt. value. G = %deﬂj_l. IF
Mo were Invariant

dsdr % (/ 1o(d)[K|3(K — G))dr

Remark: all shaded volumes would have the same gy volume !



18 Then po(X,) is bounded, if C > |f o(S_¢x)dt|, by:
eC’e/ds|k| - eC’e/uo(dx)a(K — G)IK|

Hence < €€ O [ 1o(dx)d(K — (G —n))|K|, for e > n >0 = (any

e>n>0!
1 /[° .
<< [ an [ e st (6 =) 1]
thus, by a large (kinetic energy) deviation estimate

1 .
<< [ ma()x(6 ~n <K < 6K

\/uo (G—n<K<G))\/mo(K?) < e M

with v > 0: summable = “Borel-Cantelli”.
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