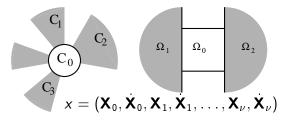
Frictionless & Gaussian thermostats: equivalence and thermodynamics limit

by Errico Presutti, GG

Thermostat models (Feynman-Vernon 1963): finite system in contact with infinite. Examples



Initial state:
$$\mu_0(dx) \stackrel{def}{=} Ce^{-\sum_{j=0}^{\nu} \beta_j H_j(\mathbf{X}_j, \mathbf{X}_j)} \prod_j \frac{d\mathbf{X}_j d\mathbf{X}_j}{N_j!}$$

$$m\ddot{\mathbf{X}}_{0i} = -\partial_{i}U_{0}(\mathbf{X}_{0}) - \sum_{j>0} \partial_{i}U_{0,j}(\mathbf{X}_{0}, \mathbf{X}_{j}) + \nleq_{i}(\mathbf{X}_{0}) + \partial_{i}\Psi(\mathbf{X}_{j})$$

$$m\ddot{\mathbf{X}}_{ji} = -\partial_{i}U_{j}(\mathbf{X}_{j}) - \partial_{i}U_{0,j}(\mathbf{X}_{0}, \mathbf{X}_{j}) + \partial_{i}\Psi(\mathbf{X}_{j})$$

$$U_{j}(\mathbf{X}_{j}) = \sum_{q,q' \in \mathbf{X}_{i}} \varphi(q - q'), \ U_{0,j}(\mathbf{X}_{0}, \mathbf{X}_{j}) =$$

$$\Psi(X) = \sum_{q \in X} \psi(q)$$

 $\sum_{q \in \Omega_0, q' \in \Omega_i} \varphi(q - q')$

Initial state: infinite Gibbs:

$$q \in X$$

With given chemical potentials λ_i and temperatures β_i^{-1}

No phase transitions \Rightarrow kinetic-potential energy density, density and many observables are constant with μ_0 probability 1 at time t=0

$$\lim \frac{1}{100000} K_{i,\Lambda}(x) = \frac{d}{2} \beta_i^{-1} \delta_i$$

$$\lim_{\Lambda o \infty} rac{1}{|\Lambda \cap \Omega_j|} \mathcal{K}_{j,\Lambda}(x) = rac{d}{2} eta_j^{-1} \delta_j$$
 $\lim_{\Lambda o \infty} rac{1}{|\Lambda \cap \Omega_i|} \mathcal{N}_{j,\Lambda}(x) = \delta_j \qquad \lim_{\Lambda o \infty} rac{1}{|\Lambda \cap \Omega_i|} \mathcal{U}_{j,\Lambda}(x) = u_j$

Thermostats should admit evolution: defined by "IR limit". Cut-off in a ball Λ_n (side size $2^n r_{\varphi}$). Time evolution exists $x \to S_t^{(n,0)} x$;

it should be also $\lim_{n o\infty} S_t^{(n,0)} x = S_t^{(0)} x$

Thermostats should have fixed temperature, density, energy density at all times (actually all intensive observables). In part.

$$\lim_{\Lambda o\infty}rac{1}{|\Lambda\cap\Omega_j|} extit{K}_{j,\Lambda}(S_t^{(0)}x) = rac{d}{2}eta_j^{-1}\delta_j$$

Entropy: thermostats entropy increases by

$$\sigma_0(x) = \sum_{j>0} \frac{Q_j}{k_B T_j(x)}, \qquad Q_j \stackrel{def}{=} -\dot{\mathbf{X}}_j \cdot \partial_{\mathbf{X}_j} U_{0,j}(\mathbf{X}_0, \mathbf{X}_j))$$

Existence: Theorem by Caglioti, Marchioro, Pulvirenti (2000)

 $W(x; \xi, R)$ =total energy + number of particles in ball $\mathcal{B}(\xi, R)$

 $\mathcal{E}(x) \stackrel{\text{def}}{=} \sup_{\xi} \sup_{R > (\log_+(\frac{\xi}{\ell_c}))^{1/d}} \frac{W(x;\xi,R)}{R^d}$. Then Theorem: $\exists C(\mathcal{E}), c(\mathcal{E})^{-1}$, increasing functions of \mathcal{E} , such that the frictionless evolution satisfies the local dynamics property and if $q_i(0) \in \Lambda_k \ (v_1 = \sqrt{\frac{2\varphi(0)}{m}})$

(1)
$$|\dot{q}^{(n,0)}(t)| \leq v_1 C(\mathcal{E}) k^{1/2},$$

(2) $\operatorname{distance}(q_i^{(n,0)}(t), \partial(\cup_j \Omega_j \cap \Lambda)) \geq c(\mathcal{E}) k^{-3/2\alpha} r_{\varphi}$
(3) $\mathcal{N}_i(t, n) \leq C(\mathcal{E}) k^{3/4}$
(4) $|x_i^{(n,0)}(t) - x_i^{(0)}(t)| \leq C(\mathcal{E}) r_{\varphi} e^{-c(\mathcal{E})2^{nd/2}}$

(4)

 $\forall n > k$. The $x^{(0)}(t)$ is the unique solution of the frictionless equations satisfying the first three items above.

Q1: is the temperature fixed for t > 0? are intensive quantities constants of motion? Q2: Alternative models $(\Lambda_n$ -regularized)

$$m\ddot{\mathbf{X}}_{0i} = -\partial_i U_0(\mathbf{X}_0) - \sum_{j>0} \partial_i U_{0,j}(\mathbf{X}_0,\mathbf{X}_j) +
otin (\mathbf{X}_0) + \partial_i \Psi(\mathbf{X}_j)$$

 $m\ddot{\mathbf{X}}_{ji} = -\partial_i U_j(\mathbf{X}_i) - \partial_i U_{0,j}(\mathbf{X}_0, \mathbf{X}_i) + \partial_i \Psi(\mathbf{X}_i) - \alpha_{i,n} \dot{\mathbf{X}}_{ii}$

Wth
$$\alpha_{j,n}$$
 so fixed that $U_{j,\Lambda_n} + K_{j,\Lambda_n} = E_{j,\Lambda_n}$ is exact constant
$$\alpha_{j,n} \stackrel{def}{=} \frac{Q_j}{d \ N_i k_B T_i(x)}, \qquad Q_j \stackrel{def}{=} -\dot{\mathbf{X}}_j \cdot \partial_j U_{0,j}(\mathbf{X}_0,\mathbf{X}_j)$$

with
$$m\dot{\mathbf{X}}_{i}^{2} \stackrel{\text{def}}{=} 2K_{i,\Lambda_{n}}(x) \stackrel{\text{def}}{=} dN_{i}k_{B}T_{i}(x)$$

with
$$m\mathbf{X}_{j}^{2} \stackrel{\text{def}}{=} 2K_{j,\Lambda_{n}}(x) \stackrel{\text{def}}{=} dN_{j}k_{B}T_{j}(x)$$

Idea:
$$Q_j \stackrel{\text{def}}{=} - \dot{\mathbf{X}}_j \cdot \partial_j U_{0,j}(\mathbf{X}_0, \mathbf{X}_j)$$
 is of the order $O(1)$ hence $\alpha_j = \frac{Q_j}{d N_j k_B T_{j,n}(\mathbf{x})}$ **tends to** 0 as $n \to \infty$.

But is $T_i(x) > c > 0$??

Theorem (Presutti, G): with
$$\mu_0$$
-probability 1

(a)
$$\frac{K_{j,\Lambda_n}(\mathbf{x})}{|\Lambda_n \cap \Omega_i|} \ge \frac{1}{4} d N_j \beta_i^{-1}$$
 (hence $\alpha \xrightarrow{n \to \infty} 0$).

(b) $\lim_{n\to\infty} S_t^{(n,1)} x = \lim_{n\to\infty} S_t^{(n,0)} x$ for all t>0.

Equivalence? (in therm. $\lim_{n \to \infty} \Lambda_n \to \infty$)

(c)
$$\frac{d\mu_0(dx)}{dt} = -\sigma(x)\mu_0(dx)$$
 and
$$\sigma(x) = \sum_{i=0}^{\infty} \frac{Q_i}{k_B T_i(x)} + \beta_0(\dot{K}_0 + \dot{U}_0 + \dot{\Psi}_0) \stackrel{def}{=} \sigma_0(x) + \dot{F}(x)$$

Entropy production differs by a time derivative of a bounded observable from the volume contraction:

 \Rightarrow average of $\sigma \equiv$ average of σ_0 **provided** $\beta_i(x)$ is a constant of motion as $n \to \infty$ and $\beta_i(S_t x) = \beta_i$ In other words: very generally phase space contraction can be

identified with the physically defined entropy production.

Theorem: If $G_{V_n}(x) \stackrel{\text{def}}{=} \frac{1}{|\Lambda_n \cap \Omega_i|} \sum_{Y \subset X \cap \Lambda_n} \Gamma(Y)$ is superstable for $|\varepsilon|$ small and if there are no phase transitions in the thermostats $(P(\varphi + \varepsilon \Gamma) \text{ (twice) differentiable at } \varepsilon = 0)$

for
$$|\varepsilon|$$
 small and if there are no phase transitions in the thermostats $(P(\varphi + \varepsilon \Gamma) \ (twice) \ differentiable \ at \ \varepsilon = 0)$

$$\lim_{\Lambda_n \to \infty} \frac{1}{\Lambda_n \cap \Omega_i} G_{\Lambda_n \cap \Omega_j} (S_t x) = g$$

with
$$\mu_0$$
-probability 1 and for all $t>0$.

Same with "no conditions" if, for each fixed m, n, the correlation functions of μ_0 cluster

uniformly in the diameters of the sets $\{q_1,\ldots,q_n\}$ and

 $\rho(q_1,\ldots,q_n,y_1+\xi,\ldots,y_m+\xi)-\rho(q_1,\ldots,q_n)\rho(y_1+\xi,\ldots,y_m+\xi)\xrightarrow[\xi\to\infty]{}0$

 $\{y_1,\ldots,y_n\}$.

$$\rho(a_1 \quad a_2 \quad v_1 + \xi \quad v_m + \xi) - \rho(a_1 \quad a_2 \quad v_1 + \xi)$$

(I) Proof that kinetic energy per particle (in the Λ_n -regularized motion) stays $> \frac{d}{4}\beta_i^{-1}$ with μ_0 -probability 1 for $t \leq \Theta$.

Method: "Entropy estimates" for thermostatted motions

(II) Proof that the number of particles and their (kinetic+wall) energy in a unit box grows at most with a power $\gamma \in (\frac{1}{2},1)$ of $(\log_+(|\xi|/r_{\varphi})) \cdot (\log n)$

This is based on combining an idea of Sinai, and one of Fritz-Dobrushin, and Marchioro, Pellegrinotti, Presutti, Pulvirenti (1975,1976).

Let
$$||x|| \stackrel{def}{=} \max_{\xi \in \Lambda_n} \frac{\max(N_{C_{\xi}}(x), \varepsilon_{C_{\xi}}(x))}{(\log_+(\xi/r_{\varphi}))^{1/2}}$$

 C_{ξ} = unit cube centered at ξ , $N_{C_{\xi}}(x)$ = number of particles in C_{ξ} , $\varepsilon_{C_{\xi}}^{2} = \max_{q \in C_{\xi}} (\frac{1}{2}\dot{q}^{2} + \psi(q))$.

$$T_n(x) \stackrel{def}{=} \max \{ t : t \leq \Theta : \forall \tau < t, \}$$

$$\frac{K_{j,n}(S_{\tau}^{(n,1)}x)}{\varphi_0} > \kappa 2^{nd}, \quad \|S_t^{(n,1)}x\|_n < (\log n)^{\gamma} \}.$$

1) Define for x s.t. $\mathcal{E}(x) < E$, the **stopping time** $\tau(x)$

- 2) show that before reaching the stopping time the frictionless evolution and the thermostatted evolution are very close for particles starting within Λ_k provided the cut-off $n \gg k$.
- 3) Check that the μ_0 -probability of $\mathcal{B} \stackrel{\text{def}}{=} \{x \mid x \in \mathcal{X}_E \text{ and } T_n(x) < \Theta\}$ is

$$T_n(x) \leq \Theta$$
 is

$$\mu_0(\mathcal{B}) \leq C e^{-c(\log n)^{2\gamma}}.$$

Via large deviations estimates.

Estimate the probability of $\mathcal{X}_n \stackrel{\text{def}}{=} \{\mathcal{E}(x) \leq E; \ T_n(x) < \Theta\}$. From (2) derive a bound on the *max entropy production* within the stopping time as $|\int_0^{\tau_n(x)} \sigma(S_t^{(n,1)}x) dt| \leq C'$ with C' depending only on E.

For inst. estimate probab. that kinetic energy becomes smaller than 1/2 of its μ_0 -almost sure asympt. value. $G=\frac{1}{4}N_jd\beta_j^{-1}$. IF μ_0 were invariant

$$dsd\tau \stackrel{\text{def}}{=} (\int \mu_0(dx) |\dot{K}| \delta(K - G)) d\tau$$

$$d\tau$$

$$G \stackrel{d\sigma}{=} d\tau$$

$$d\tau$$

$$d\tau$$

$$d\tau$$

Remark: all shaded volumes would have the same μ_{0} volume !

 $e^{C'}\Theta\int ds |\dot{K}| \equiv e^{C'}\Theta\int \mu_0(dx)\delta(K-G)|\dot{K}|$ Hence $\leq e^{C'}\Theta \int \mu_0(dx)\delta(K-(G-\eta))|\dot{K}|$, for $\varepsilon \geq \eta \geq 0 \Rightarrow$

Then $\mu_0(\mathcal{X}_n)$ is bounded, if $C \geq |\int_0^{\tau_n(x)} \overline{\sigma(S_{-t}x)} dt|$, by:

$$(\text{any } \varepsilon > \eta > 0!)$$

$$\leq C \frac{1}{\varepsilon} \int_0^\varepsilon d\eta \int \, \mu_0(d\mathsf{x}) \, \delta(\mathsf{K} - (\mathsf{G} - \eta)) \, |\dot{\mathsf{K}}|$$

thus, by a large (kinetic energy) deviation estimate

$$\leq \frac{1}{\varepsilon} \int \mu_0(dx) \, \chi(G - \eta \leq K \leq G) \, |K|$$

$$\leq \frac{1}{\varepsilon} \sqrt{\mu_0(\chi(G - \eta \leq K \leq G))} \, \sqrt{\mu_0(K^2)} \leq e^{-\gamma |\Lambda_n|}$$
with $\gamma > 0$: summable \Rightarrow "Borel-Cantelli" (after a similar bound on the second item appearing in definition of stopping

time) yields that the stopping time must be Θ with μ_0 -prob 1.

G. Gallavotti, E. Presutti:

Nonequilibrium, thermostats and thermodynamic limit,

Reference

http://ipparco.roma1.infn.it

Archivi: arxiv.org 0905.3150