Frictionless & Gaussian thermostats:
equivalence and thermodynamics limit

by Errico Presutti, GG

Thermostat models (Feynman-Vernon 1963): finite system in
contact with infinite. Examples

G

Cz Q, Q Q,

X = (XO,Xo,Xl,xl,... X,/,X )

Initial state: jio(dx) % Ce™ - AHiXiX) T X%,



mXo; = — 8;Up(Xo) — ZanJ Xo, Xj) + =i(Xo) + 0¥ (X

Jj>0

mXJ, = — 8,UJ(XJ) — 8,-U07j(X0, Xj) + 8;W(Xj)

J)

Ui(X)) = g qex; (@ — ), Uoj(Xo, X)) =
quﬂo,q’eﬂj Sp(q - ql)

=> 4(q)

qgeX

Initial state: infinite Gibbs;
With given chemical potentials \; and temperatures 51-’1




No phase transitions = kinetic-potential energy density,
density and many observables are constant with 1 probability
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Thermostats should admit evolution: defined by “IR limit”.
Cut-off in a ball A, (side size 2"r,). Time evolution exists

X —> St("’o)x;
it should be also lim,_., S!"”x = 5¥x

Thermostats should have fixed temperature, density, energy
density at all times (actually all intensive observables). In part.
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Entropy: thermostats entropy increases by
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Existence: Theorem by Caglioti, Marchioro, Pulvirenti (2000)



W (x; &, R)=total energy + number of particles in ball B(¢, R)

Theorem: g(X) di sup§ SupR>(|og+( n ))l/d W(Xf R) Then

AC(€), c(E) 71, increasing functions of €, such that the
frictionless evolution satisfies the local dynamics property and

if 4i(0) € Ak (v = /229)

1) [g™O(e)] < v C(E) kM2,

(2)  distance(q""(¢), DU N A)) > c(€) k>,
(3)  WNi(t,n) < C(€) K**

(@) ") = x(0)] < C(E)r, e @
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¥V n > k. The x%(t) is the unique solution of the frictionless
equations satisfying the first three items above.



Q1: is the temperature fixed for t > 0 7 are intensive
quantities constants of motion?

Q2: Alternative models (A,—regularized)

mXo;i = — 9; Up(Xo) ZanJ Xo, Xj) + Si(Xo) + 0V (X))

Jj>0

mXji = — 3iUi(X;) — 3:Up j(Xo, X;) + 9, W(X;) —

@j,nKji

Wth «; , so fixed that Uja, + Kja, = Eja, is exact constant

def Q; def o
Qjn = WJT(X)’ Q= — X; - 9;Upj(Xo, X;)

with mX difZKj/\,,( )didekBT( )



Equivalence? (in therm. lim. A, — c0)

Idea: Q% — X; - ;Upj(Xo, X;) is of the order O(1) hence
Ozj:ﬁwtendstOOasn—Hx

Butis Tj(x) >c>077

Theorem (Presutti, G): with pio—probability 1

(a) |/(,,Am"§zx| 1A N3 ' (hence ot —=0).

(b) limn_yee S x = limp_yee S x for all £ > 0.

(c) 49 — 5 (x)pi(dlx) and

7 ; kg gj( ) + Bo(Ko + Uy + Wo) E a(x) + F(x)

Entropy production differs by a time derivative of a bounded
observable from the volume contraction:



= average of o = average of 0y provided /3;(x) is a constant
of motion as n — oo and Fj(S:x) = 5

In other words: very generally phase space contraction can be
identified with the physically defined entropy production.

Theorem: If Gy (x) % le S yexen, T(Y) is superstable
n J n

for || small and if there are no phase transitions in the
thermostats (P(p + €I') (twice) differentiable at ¢ = 0)
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with jo-probability 1 and for all t > 0.




Same with “no conditions” if, for each fixed m, n, the
correlation functions of pq cluster

PG A it s Yt E)=p(Grs - an) P HEs - ymtE) o2 €

uniformly in the diameters of the sets {q1,...,q,} and
{Y1;---7Yn} .



Method: “Entropy estimates’ for thermostatted motions
(1) Proof that kinetic energy per particle (in the A,—regularized
motion) stays > %ﬂj_l with pp-probability 1 for t < ©.

(1) Proof that the number of particles and their (kinetic+wall)
energy in a unit box grows at most with a power v € (3,1) of

(log (|¢]/7,)) - (log n)
This is based on combining an idea of Sinai, and one of

Fritz-Dobrushin, and Marchioro, Pellegrinotti, Presutti,
Pulvirenti (1975,1976).

max(Nc‘5 (X),Ecj5 (x))
(logy (&/rp)) /2

Ce= unit cube centered at &, N, (x)= number of particles in
Co, 22, = maxgec, (57 + (a)).

Let ||x|| & maxeen,



1) Define for x s.t. £(x) < E, the stopping time 7(x)

T,,(x)d:ef max{t: t<O: V7 <t
K'n 57('n,1) n
BalS ) o (), < (og ')
0

2) show that before reaching the stopping time the frictionless
evolution and the thermostatted evolution are very close for
particles starting within A, provided the cut-off n > k.

3) (Cf;eck th}at the pio-probability of B {x |x € X¢ and
T,(x) <Olis
po(B) < € e<lloen™,

Via large deviations estimates.



Estimate the probability of X, & {£(x) < E; Ta(x) < ©}.
From (2) derive a bound on the max entropy production
within the stopping time as |fT”(X 5("’1)x)dt| < C" with C'
depending only on E.

For inst. estimate probab. that kinetic energy becomes smaller
than 1/2 of its ip-almost sure asympt. value. G = ;N;df; *.
IF 0 were invariant

dsdr %! (/ Ho(dX)|[KIO(K — G))dr

Remark: all shaded volumes would have the same 1y volume !



Then i9(X,) is bounded, if C > | [[™ o(S_.x)dt|, by:

CO/ds|K| = ec’e/uo(dx)a(K— G)|K|

Hence < e€'O [ 1uo(dx)3(K — (G — n))|K|, fore > n >0 =
(any e > n > 0!)

<2 [ dn [ (o) sk~ (6~ n) K

thus, by a large (kinetic energy) deviation estimate

1

<2 [ (e (6 -n< K <G)IK

m (6 —n<K<G)) (K2 < e

with v > O. summable = “Borel-Cantelli” (after a similar
bound on the second item appearing in definition of stopping
time) yields that the stopping time must be © with po-prob 1.
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