Thermostats, BBGKY hierarchy and Fourier law @
by Errico Presutti, Guido Gentil&, Alessandro Giuliarf, GG*@

Equilibrium Statistical Mechanics starts with analysistbermodynamic
limit”: its importance in Nonequilibrium is also clear.

First Noneq. problem is to understand that time evolutiomdividual
particles in insensitive to the motion of all but a few othartgles near it (of
course “near” means within a distance that grows with time).

Difficulties:

(1) nonequilibrium— nonconservative forces aet systems “heat up™
need to remove heat to achieve stationarityrow?

(2) conceptual diiculty: “how to do that”? Microscopic mechanics is not
only “conservative” but also “reversible”.
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Thermostat models (review by Bonetto, Lebowitz, Rey-B&l200)

(0) (Lebowitz 1959, Feynman-Vernon 1963): finite systemdntact with
infinite ones which are “at equilibrium a”. Newtonian !

(1) (Nosé, Hoover, Evans, Morriss 198P984): finite systems in contact
with finite systems subject to forces that constrain thengerature, or
energy (or other quantities) constant.

(0): ok (by wide consensus)

(2): criticized as non-physically meaningful because efititroduction of
artificial forces.But Authors steadfastly argued thatsforces are artificial
but most resultsre notbecause thermostatting mechanism is irrelevant.

Of course for many the real interest of (1) is that it carstveulated
computationallyand it led to new developments and ideas.
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Once defined the models the next question to address is

Lebowitz (1959)it is known experimentally, and we hope that it is possible
also to prove mathematically for our model, that all impott@atures of the
stationary state of a system conducting heat are indepéantidre details of
the interaction with its surroundings”

Hence the question is to see whether the models do lead atdeas
elementary transport properties in stationary states.

Equivalencéfirst problem)

Evans-Searles (following an earlier work by Evans-Sarrharng attempted

a general equivalence proof of models like 0&1. Ruelle dises a special
case. Review by Bright-Evans-Searles.

Concrete examples:
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Examples (few out of many varieties: case®4dl)

G

R Q, Q, Q,

X= (XO’ XO’ xla Xla Y xn’ xn)

mXgi = — 8;Uo(Xo) — Z 9iUg;j(Xo, Xj) + 0i'¥(X;) + @i(Xo)
j>0
m>"(]-i = - ain(Xj) - 6iU0,j(X0, Xj) + aiT(Xj) - aanji
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Interaction models (Lebowitz 1959)

Ui(X)) = Z e(q-d), j-th thermostat potential
9,0’ €X;

Uo;j(Xo, Xj) = Z e(q-q) j-th thermostat-system

0eQ,q' €L
Y(X) = Z () confining wall potential
© geX
r —a
©o ¥~ (\dwaul) %o
er > >

Initial stateX: X; sampled with infinite Gibbslistributions at given density
6 and temperature@*l’: max(d;, 5;) will be supposed small.
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Definition of Gibbs stateZ ) in a boxA in probability theory

(1) measurd on the space of the infinite sequenes (g, pi);2, with
g € A which arelocally finite

(2) in every spherical bo8(R) N A assigns to a configuratiotk = (pn, n)
of n particles inB(R) N A given particlesxg outsideB(R) N A probability

def oy dpnd
Pr(Xr|XS) = —— Z(R) —ﬂU(xR\xFo%

def
with UXIY) S Sgex 202 + Sqqex 9(0 - ) + Dgex. qey #(d - G) or,

Classical key theorendor z 3 small there is a unique such measurg i§
“reasonable” (e.g. i as above). In general there may be several such
measures (but at least one).
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Trying to study precisely the equivalence problem we must
I) check {.e prove): models (0) (frictionless) are well defined: i.e. model (0)

defined first in finite volumeé\ shows motiong — X%A(t) tending to limit
X(t) asA — oco. “Thermodynamic limit existan absence of dissipation.

1) check (.e prove that models (1) also hawte— X1A(t) admits a limit
X(t): Thermodynamic limit existi presence of dissipation

1) check (i.e prove) that in both cases the intensive quantities are exact
constants of motioni.g. at least at finite timeshermostats temperatures
(and other intensive quantities) are{many) constants of motion.

Geometry is essentigand alsad = 3, to study heat conduction
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Examples of intensive observables

Kinetic-potential energy density, density and many oheleles are constant
with ug probability 1 at timet = 0: examples? LeA be a sphere

1
lim 16
im A Kia(X) = i

———Nja(¥) = lim - Uia () =

im 1 im 1

A—>oo|AﬂQ| oo |[A N Q]
with probability 1 in each Gibbs state at small density amghhiemperature
(large deviations th.

This should remain true for atl> 0 at leasf(in the thermodynamic limit and
keeping in mind that dimension matters).

Existence: Consider theegularized motions a container\, Q N Ap,
Ay, = ball or radius 2r,:

t— ()

well defined.
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Theorem: For 6,8 small: Vt < T with prob.10on X% 3C,c,V =,
independentlpf regularization box size n, particles intially i (k< n)
evolve s.t.

(1) do not go too far :

g™ < v CK/2
(2) nor go too close to the walise. to dgfa(Uij N An)

distancég™?(t), walls) > ck ¥,

(3) no articles accumulataear any particle ﬁ)(t) initially in A

Ni(t,n) < CK/4

(4) Motion isinsensitiveto regularization
_~ond/2
4" - M)l < Cr e

¥ n> k. The ¥(t) is uniquefrictionless motion satisfying 1,2,3
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Models (1) (dissipative “unphysical” thermostats) (Ptas()

Comparison with frictionless possible via entropy prodrttateproperties.
Entropy: of thermostats increases b>{x2 "2Ki A, (0 E'd NkgT] )]

def

oo(X) = Z kBTJ(x) Q= -X%- 0x;Uoj(Xo, Xj))

Unphysical friction is (for isoenergetic thermostatsifinitesimal

def Q

def :
Ujn = i = — Xj - 9Ugj(Xo, X
j,n deBT](X) Qj j j O,J( 0 J)

Phase space contractiofs not infinitesimal
o) =>" _ D Bo(Ko + Uo+ Wo) & o) + FX)
= keTi(x)

ICMS-Edinburgh20-24 September 2010 10



Equivalence? (in therm. lim\, — o). Idea:

Q; e Xj - 9jUpj(Xo, Xj) is O(1) (Sarman, Williams,Searles,Evari304)

henceq; = = 0: infinitesimalasn — co.

Q
d NKgTjn(x)

ButisT;n(X) > c > 0 ??i.e. specific kinetic energy positive?

Theorem (Presultti, G)For 6, 8 small: with ug—probability1 and large n
(a) specific K.E. stays 0 = a -0 = unphysical forces disappear
(0) liMpse S™x = liMpe S™9% Vi > 0= equivalence

(c) % = —o(X)u(dX) phase space contracts

Entropy productionro(X) = vol. contraction-(x) + a time derivative-F(x):
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= (average&fluctuations af) =(average&fluctuations ofyy).
In other words: very generally phase space contraction eaddntified with
the physically defined entropy production.

provided gj(x) = is a constant of motion as— oo andBj(SX) = B;

keT ®

Theorem: For ¢, 8 small: the specific kinetic energy of each thermostat, with
uo-probability 1, is constanti.e. thermostats temperatures are constantL.

More: if @ is anypair potential withy + e® superstable fog| small and
P(¢ + @) (twice) differentiable at = 0 (i.e. “no phase trans.”))

f(s0< > @) -qm) =f

_WA 1 q.qexAn

and for allt > O: i.e. the specific potential energy dfis a constant
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A natural question is whether there is chance that the syafgnmoaches a
stationary state. This has been investigated (P.Garri@,iGthe case of a
system of hard disks.

Typical configuration of the model simulated. The disks @wthite part
(bulk particles) are accelerated in the y direction by a driyfield E. The
disks at the grey boxes act as thermal baths
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The next step is to study existence of stationary statestesitiperatures at
+co different:p.(qn) correspond t@.., B

Lebowitz (1959):We try to findI'-space ensembles that will represent
systems not in equilibrium in the same way that microcaredp@anonical,
g.c. ensembles represent systems in equilibriusndthere is of course no
priori assurfgloce that such a parallel can be made

Fig.1: A hyperboloid-like containef.
> < Shape is symbolic &B)

Statlonary BBGKY hierarchghard core)
=00 p(Pn, An) = 0 = ( — i - 3ip(Pn, Gn)

i=1
+ f w - (= pi) p(Pn, Qn, 77, G + rw)do, d7r)
o (ai,an)
Work in progres¢Gentile,Giuliani)
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—%.B(Qn)Pn'Pn
" C ok ot (==
V(@2m) detB(an) v2C

Look for BBGKY solutionexpanded in Wick (Hermite) monomials:

G, (pr) = )

p(Pns tn) = Gay(Pn) ) palCn) : Pr :

A

n d
def _ Kk __ def i
N N B (R, \/ﬁ—(;)pk

k=1 =1
BBGKY become a hierarchy in the cieientspa(qn).

Result O: In the stationary case the functiopg(qn) satisfy a hierarchy of
equations: for eaclpa(qn) the hierarchy involvepa (gm) with
m=n+ 1A =|A of pa(0n) With |A'| = A, |A] + 2, |A] + 4.

This result is a simple algebraic check (a key cancellatin: 6 is missing
EvenA and oddA have independent equatiowhich could be coupled by
boundary conditions: otherwiggqyq = 0 would be possible
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Look for solutions# 0 of the odd correlations. Several exact solutions can
be found (disregarding boundary conditions at collisions)

ph:

Podd(Cn, Pn) = On>1 Z Chi 3iaE(Qn) - Op, al

i
with F(qn) = [T, F(q) and withCp;(A4, .. ., As) depending only on
A, ] # 1 andarbitraryprovided

— 168-6F
AF - 1P

5 =0inQ, dnF = 0inoQ

Any relation betweefr andg leads to a nonlinear heat equation which
become&T = 0 upon linearization.

Questions

(1) Are there solutions for the even correlations?
(2) How to determiné and the arbitrary constants?

We consider several possibilities: but the problem remaids open.
Further research one the matter should be worth pursuing..
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