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Equilibrium Statistical Mechanics starts with analysis of“thermodynamic
limit”: its importance in Nonequilibrium is also clear.

First Noneq. problem is to understand that time evolution ofindividual
particles in insensitive to the motion of all but a few other particles near it (of
course “near” means within a distance that grows with time).

Difficulties:

(1) nonequilibrium→ nonconservative forces act→ systems “heat up”→
need to remove heat to achieve stationarity→ how?

(2) conceptual difficulty: “how to do that”? Microscopic mechanics is not
only “conservative” but also “reversible”.
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Thermostat models (review by Bonetto, Lebowitz, Rey-Bellet 2000)

(0) (Lebowitz 1959, Feynman-Vernon 1963): finite system in contact with
infinite ones which are “at equilibrium at∞”. Newtonian !

(1) (Nosé, Hoover, Evans, Morriss 1982∼1984): finite systems in contact
with finite systems subject to forces that constrain their temperature, or
energy (or other quantities) constant.

(0): ok (by wide consensus)

(1): criticized as non-physically meaningful because of the introduction of
artificial forces.But Authors steadfastly argued thatyesforces are artificial
but most resultsare notbecause thermostatting mechanism is irrelevant.

Of course for many the real interest of (1) is that it can besimulated
computationallyand it led to new developments and ideas.
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Once defined the models the next question to address is

Lebowitz (1959)“it is known experimentally, and we hope that it is possible
also to prove mathematically for our model, that all important features of the
stationary state of a system conducting heat are independent of the details of
the interaction with its surroundings”

Hence the question is to see whether the models do lead at least to the
elementary transport properties in stationary states.

Equivalence(first problem)

Evans-Searles (following an earlier work by Evans-Sarman)have attempted
a general equivalence proof of models like 0&1. Ruelle discusses a special
case. Review by Bright-Evans-Searles.

Concrete examples:
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Examples (few out of many varieties: cases a=0,1)

x = (X0, Ẋ0,X1, Ẋ1, . . . ,Xn, Ẋn)

C1

C2

C3

C0

Ω
1

Ω
0

Ω
2

mẌ0i = − ∂iU0(X0) −
∑

j>0

∂iU0,j(X0,X j) + ∂iΨ(X j) + Φi(X0)

mẌ ji = − ∂iUj(X j) − ∂iU0,j(X0,X j) + ∂iΨ(X j) − aαjẊ ji
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Interaction models (Lebowitz 1959)

Uj(X j) =
∑

q,q′∈X j

ϕ(q− q′), j-th thermostat potential

U0,j(X0,X j) =
∑

q∈Ω0,q′∈Ωj

ϕ(q− q′) j-th thermostat-system

Ψ(X) =
∑

q∈X
ψ(q) confining wall potential

ϕ0

ϕ

ψ ∼ ( r
|dwall| )

−α ϕ0

rϕ

Initial stateX: X j sampled with infinite Gibbsdistributions at given density
δj and temperaturesβ−1

j ’: maxj(δj, βj) will be supposed small.
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Definition of Gibbs state (z, β) in a boxΛ in probability theory

(1) measureP on the space of the infinite sequencesX = (qi, pi)∞i=0 with
qi ∈ Λ which arelocally finite

(2) in every spherical boxB(R) ∩ Λ assigns to a configurationXR = (pn, qn)
of n particles inB(R) ∩ Λ givenparticlesXc

R outsideB(R) ∩ Λ probability

PR(XR |Xc
R)

def
=

1
Z(R)

zne−βU(XR|Xc
R) dpndqn

n!

with U(X|Y)
def
=
∑

q∈X
1
2p2 +

∑
q.q′∈X ϕ(q− q′) +

∑
q∈X,q′∈Y ϕ(q− q′) or,

Classical key theorem:for z, β small there is a unique such measure ifϕ is
“reasonable” (e.g. ifϕ as above). In general there may be several such
measures (but at least one).
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Trying to study precisely the equivalence problem we must

I) check (i.e prove): models (0) (frictionless) are well defined: i.e. model (0)
defined first in finite volumeΛ shows motionst→ X0,Λ(t) tending to limit
X(t) asΛ→ ∞. “Thermodynamic limit exists” in absence of dissipation.

II) check (i.e prove) that models (1) also havet → X1,Λ(t) admits a limit
X(t): Thermodynamic limit existsin presence of dissipation

III) check (i.e prove) that in both cases the intensive quantities are exact
constants of motion (i.e. at least at finite times)thermostats temperatures
(and other intensive quantities) are (∞-many) constants of motion.

Geometry is essential, and alsod = 3, to study heat conduction
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Examples of intensive observables

Kinetic-potential energy density, density and many observables are constant
with µ0 probability 1 at timet = 0: examples? LetΛ be a sphere

lim
Λ→∞

1
|Λ ∩ Ωj |

Kj,Λ(x) =
d
2
β−1

j δj

lim
Λ→∞

1
|Λ ∩ Ωj |

Nj,Λ(x) = δj lim
Λ→∞

1
|Λ ∩ Ωj |

Uj,Λ(x) = uj

with probability 1 in each Gibbs state at small density and high temperature
(large deviations th.)

This should remain true for allt > 0 at least(in the thermodynamic limit and
keeping in mind that dimension matters).

Existence:Consider theregularized motionsin a containerΛn Ω ∩ Λn,
Λn = ball or radius 2nrϕ:

t → q(0,n)(t)

well defined.
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Theorem: For δ, β small: ∀t ≤ T with prob.1 on X0 ∃C, c,V ⇒,
independentlyof regularization box size n, particles intially inΛk (k< n)
evolve s.t.
(1) do not go too far :

|q̇(n,0)
i (t)| ≤ V C k1/2

(2) nor go too close to the wallsi.e. to
def
= ∂(∪jΩj ∩ Λn)

distance
(
q(n,0)

i (t),walls
)
≥ c k−3/2α rϕ

(3) no articles accumulatenear any particle q(n)
i (t) initially in Λk

Ni(t, n) ≤ C k3/4

(4) Motion isinsensitiveto regularization

|q(n,0)
i (t) − q(0)

i (t)| ≤ C rϕ e−c2nd/2

∀ n > k. The x(0)(t) is uniquefrictionless motion satisfying 1,2,3
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Models (1) (dissipative “unphysical” thermostats) (Presutti, G)

Comparison with frictionless possible via entropy production rateproperties.

Entropy: of thermostats increases by
[
Ẋ2

j
def
= 2Kj,Λn(x)

def
= d NjkBTj(x)

]

σ0(x) =
∑

j>0

Qj

kBTj(x)
, Qj

def
= − Ẋ j · ∂X j U0,j(X0,X j))

Unphysical friction is (for isoenergetic thermostats)infinitesimal

αj,n
def
=

Qj

d NjkBTj(x)
, Qj

def
= − Ẋ j · ∂jU0,j(X0,X j)

Phase space contractionis not infinitesimal

σ(x) =
∑

j>0

Qj

kBT j (x)
+ β0(K̇0 + U̇0 + Ψ̇0)

def
= σ0(x) + Ḟ(x)
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Equivalence? (in therm. lim.Λn → ∞). Idea:

Qj
def
= − Ẋ j · ∂jU0,j(X0,X j) is O(1) (Sarman, Williams,Searles,Evans2004)

henceαj =
Qj

d NjkBTj,n(x) ⇒ 0: infinitesimalasn→ ∞.

But isTj,n(x) ≥ c > 0 ?? i.e. specific kinetic energy positive?

Theorem (Presutti, G):For δ, β small: withµ0–probability1 and large n

(a) specific K.E. stays> 0 ⇒ α−−−−→n→∞ 0 ⇒ unphysical forces disappear

(b) limn→∞ S(n,1)
t x = limn→∞ S(n,0)

t x ∀t > 0⇒ equivalence.

(c) dµt(dx)
dt = −σ(x) µt(dx) phase space contracts

Entropy productionσ0(x) = vol. contractionσ(x) + a time derivative−Ḟ(x):
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⇒ (average&fluctuations ofσ) ≡(average&fluctuations of)σ0).

In other words: very generally phase space contraction can be identified with
the physically defined entropy production.

provided βj(x) = 1
kBTj (x) is a constant of motion asn→ ∞ andβj(Stx) = βj

Theorem: For δ, β small: the specific kinetic energy of each thermostat, with
µ0-probability1, is constant:i.e. thermostats temperatures are constantL.

More: if Φ is anypair potential withϕ + εΦ superstable for|ε| small and
P(ϕ + εΦ) (twice) differentiable atε = 0 (i.e. “no phase trans.”))

f (Stx)
def
= lim
Λn→∞

1
Λn ∩ Ωj

∑

q,q′∈x,Λn

Φ(q(t) − q′(t)) = f

and for allt > 0: i.e. the specific potential energy ofΦ is a constant.
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A natural question is whether there is chance that the systemapproaches a
stationary state. This has been investigated (P.Garrido, GG) in the case of a
system of hard disks.

1 T2T
E

y

x

Typical configuration of the model simulated. The disks in the white part
(bulk particles) are accelerated in the y direction by a driving field E. The
disks at the grey boxes act as thermal baths
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The next step is to study existence of stationary states withtemperatures at
±∞ different:ρ±∞(qn) correspond toρ±, β±.

Lebowitz (1959):We try to findΓ-space ensembles that will represent
systems not in equilibrium in the same way that microcanonical, canonical,
g.c. ensembles represent systems in equilibrium... Andthere is of course no
priori assurance that such a parallel can be made

−∞

Fig.1: A hyperboloid-like containerΩ.
Shape is symbolic (d=3)

Stationary BBGKY hierarchy(hard core):

+∞

∂tρ(pn, qn) = 0 =
n∑

i=1

(
− pi · ∂iρ(pn, qn)

+

∫

σ(qi ,q′n)
ω · (π − pi) ρ(pn, qn, π, qi + rω)dσω dπ

)

Work in progress(Gentile,Giuliani)
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Gqn(pn)
def
=

e−
1
2β(qn)pn·pn

√
(2π)nd detβ(qn)−1

, : xk :
def
= (2C)k/2Hk(

x
√

2C
)

Look for BBGKY solutionexpanded in Wick (Hermite) monomials:

ρ(pn, qn) = Gqn(pn)
∑

A

ρA(qn) : pn
A :

: pA
n :

def
= :

n∏

k=1

d∏

α=1

(pkα)ak
α :, pk

def
= −

√
β(qi)

2
pk

BBGKY become a hierarchy in the coefficientsρA(qn).

Result 0: In the stationary case the functionsρA(qn) satisfy a hierarchy of
equations: for eachρA(qn) the hierarchy involvesρA′ (qm) with
m= n+ 1, |A′| = |A| or ρA′(qn) with |A′| = |A|, |A| + 2, |A| + 4.

This result is a simple algebraic check (a key cancellation:|A| + 6 is missing)

EvenA and oddA have independent equationswhich could be coupled by
boundary conditions: otherwiseρodd ≡ 0 would be possible

ICMS-Edinburgh20-24 September 2010 15



Look for solutions, 0 of the odd correlations. Several exact solutions can
be found (disregarding boundary conditions at collisions)

ρodd(qn, pn) = δn>1

∑

iα

Cn,i ∂iαF̃(qn) · ∂piα

: pA
n :

ai !

with F̃(qn) =
∏n

i=1 F̃(qi) and withCn,i(A1, . . . ,An) depending only on
Aj , j , i andarbitraryprovided

∆F̃ − 1
2
∂β · ∂F̃
β

= 0 inΩ, ∂nF̃ = 0 in ∂Ω

Any relation betweeñF andβ leads to a nonlinear heat equation which
becomes∆T = 0 upon linearization.

Questions

(1) Are there solutions for the even correlations?
(2) How to determinẽF and the arbitrary constants?

We consider several possibilities: but the problem remainswide open.
Further research one the matter should be worth pursuing..
ICMS-Edinburgh20-24 September 201016



References(also in http://ipparco.roma1.infn.it and arXiv)

G. Gallavotti, E. Presutti:
Nonequilibrium, thermostats and thermodynamic limit,
Journal of Mathematical Physics,51, 015202 (+32), 2010

Thermodynamic limit for isokinetic thermostats,
Journal of Mathematical Physics,51, 053303 (+9), 2010,

Frictionless thermostats and intensive constants of motion,
Journal of Statistical Physics,139, 618-629, 2010,

Lebowitz: Phys. Rev., 114, 1192-1202, 1959
Feynman , Vernon: Annals of Physics, 24, 118–173, 1963
Evans: J. Chem. Phys., 78, 3297-3302, 1983
Hoover, Ladd, Moran, Phys. Rev. Lett., 48, 1818-1820, 1983,
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