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The evolution of Equilibrium Statistical Mechanics started with the analysis
of the thermodynamic limit and its importance in Nonequilibrium has also
been very often mentioned

First Noneq. problem is to understand that time evolution ofindividual
particles in insensitive to the motion of all but a few other particles near it (of
course “near” means within a distance that grows with time).

Difficulties:

(1) nonequilibrium→ nonconservative forces act→ systems “heat up”→
need to remove heat to achieve stationarity→

(2) conceptual difficulty: “how to do that”?. Microscopic mechanics is not
only “conservative” but also reversible.
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Thermostat models (review by Bonetto, Lebowitz, Rey-Bellet 2000)

(0) (Lebowitz 1959, Feynman-Vernon 1963): finite system in contact with
infinite ones which are “at equilibrium at∞”. It does not require to modify
the basic conservative and reversible nature of laws of motion.

(1) (Nosé, Hoover, Evans, Morriss 1982∼1984): finite systems in contact
with finite systems subject to forces that constrain their temperature, or
energy (or other quantities) constant.

(0): ok

(1): criticized as non-physically meaningful because of the introduction of
artificial forces.But Authors steadfastly argued thatyesforces are artificial
but most resultsare notbecause thermostatting mechanism is irrelevant.

Of course for many the real interest of (1) is that it can besimulated
computationallyand it led to new developments and ideas.
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Once defined the models the next question to address is

Lebowitz (1959)“it is known experimentally, and we hope that it is possible
also to prove mathematically for our model, that all important features of the
stationary state of a system conducting heat are independent of the details of
the interaction with its surroundings”

Hence the question is to see whether the models do lead at least to the
elementary transport properties in stationary states.

Equivalence

Evans-Searles (following an earlier work by Evans-Sarman)have attempted
a general equivalence proof of models like 0&1. Ruelle discusses a special
case. Review by Bright-Evans-Searles.

Concrete examples
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Examples (few out of many varieties: model cases a=0,1)

x = (X0, Ẋ0,X1, Ẋ1, . . . ,Xn, Ẋn)

C1

C2

C3

C0

Ω 1 Ω 0 Ω 2

mẌ0i = − ∂iU0(X0) −
∑

j>0

∂iU0,j(X0,X j) + ∂iΨ(X j) + Φi(X0)

mẌ ji = − ∂iUj(X j) − ∂iU0,j(X0,X j) + ∂iΨ(X j) − aαjẊ ji
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Interactions (Lebowitz 1959)

Uj(X j) =
∑

q,q′∈X j

ϕ(q− q′), j-th thermostat potential

U0,j(X0,X j) =
∑

q∈Ω0,q′∈Ωj

ϕ(q− q′) j-th thermostat-system

Ψ(X) =
∑

q∈X
ψ(q) confining wall potential

ϕ0

ϕ

ψ ∼ ( r
|dwall| )

−α ϕ0

rϕ
Initial state: infinite Gibbs at given densityδj and temperaturesβ−1

j
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Trying to study precisely the equivalence problem we must

I) check (i.e prove) that models (0) (frictionless) are well defined: i.e. model
(0) defined first in finite volumeΛ shows motionst → X0,Λ(t) which tend to
limit X(t) asΛ→ ∞. Thermodynamic limit existsin absence of dissipation.

II) check (i.e prove) that models (1) also havet → X1,Λ(t) admits a limit
X(t): Thermodynamic limit existsin presence of dissipation

III) check (i.e prove) that in both cases the intensive quantities are exact
constants of motion (i.e. at least at finite times) the thermostats temperatures
(and other intensive quantities) are constant.

Geometry is essential, and alsod = 3, to study heat conduction
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Kinetic-potential energy density, density and many observables are constant
with µ0 probability 1 at timet = 0: examples

lim
Λ→∞

1
|Λ ∩ Ωj |

Kj,Λ(x) =
d
2
β−1

j δj

lim
Λ→∞

1
|Λ ∩ Ωj |

Nj,Λ(x) = δj

lim
Λ→∞

1
|Λ ∩ Ωj |

Uj,Λ(x) = uj

This should remain true for allt > 0 at least(in the thermodynamic limit and
keeping in mind that dimension matters).

Existence:Consider theregularized motionsin a containerΛn Ω ∩Λn,Λn =

ball or radius 2nrϕ
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Theorem: With probability1 particles of the initial state X0 evolve so that
independently of the regularization box size nthose intially inΛk (k< n)
(1) do not go too far :

|q̇(n,0)(t)| ≤ V1 C(X0) k1/2

(2) nor go too close to the walls

distance
(
q(n,0)

i (t), ∂(∪jΩj ∩ Λ)
) ≥ c(X0) k−3/2α rϕ

(3) no accumulationof particles occurs around any particle q(n)
i (t) initially

in Λk

Ni(t, n) ≤ C(X0) k3/4

(4) Motioninsensitiveto regularization

|x(n,0)
i (t) − x(0)

i (t)| ≤ C(X0) rϕ e−c(X0)2nd/2

∀ n > k. The x(0)(t) is uniquefrictionless motion satisfying 1,2,3
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Models (1) (dissipative “unphysical” thermostats) (Presutti, G)

Comparison with frictionless possible via entropy production rateproperties.

Entropy: of thermostats increases by
[
Ẋ2

j
def
= 2Kj,Λn(x)

def
= d NjkBTj(x)

]

σ0(x) =
∑

j>0

Qj

kBTj(x)
, Qj

def
= − Ẋ j · ∂X j U0,j(X0,X j))

Unphysical friction is (for isoenergetic thermostats)infinitesimal

αj,n
def
=

Qj

d NjkBTj(x)
, Qj

def
= − Ẋ j · ∂jU0,j(X0,X j)

Phase space contractionis not infinitesimal

σ(x) =
∑

j>0

Qj

kBT j (x)
+ β0(K̇0 + U̇0 + Ψ̇0)

def
= σ0(x) + Ḟ(x)
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Equivalence? (in therm. lim.Λn → ∞). Idea:

Qj
def
= − Ẋ j · ∂jU0,j(X0,X j) is O(1) (Sarman, Williams,Searles,Evans2004)

henceαj =
Qj

d NjkBTj,n(x) ⇒ 0: infinitesimalasn→ ∞.

But isTj,n(x) ≥ c > 0 ?? i.e. specific kinetic energy positive?

Theorem (Presutti, G):with µ0–probability1 and large n

(a) specific K.E. stays> 0 ⇒ α−−−−→n→∞ 0 ⇒ unphysical forces disappear

(b) limn→∞ S(n,1)
t x = limn→∞ S(n,0)

t x ∀t > 0⇒ equivalence.

(c) dµt(dx)
dt = −σ(x) µt(dx) phase space contracts

Entropy productionσ0(x) = volume contractionσ(x) + a time derivative
−Ḟ(x):
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⇒ (average&fluctuations ofσ) ≡(average&fluctuations of)σ0).

In other words: very generally phase space contraction can be identified with
the physically defined entropy production.

provided βj(x) is a constant of motion asn→ ∞ andβj(Stx) = βj

Theorem: The specific kinetic energy of each thermostat, with
µ0-probability1, is constant:i.e. thermostats temperatures are constantL.

More: if Φ is anypair potential withϕ + εΦ superstable for|ε| small and
P(ϕ + εΦ) (twice) differentiable atε = 0 (i.e. “no phase trans.”))

f (Stx)
def
= lim
Λn→∞

1
Λn ∩ Ωj

∑

q,q′∈x,Λn

Φ(q(t) − q′(t)) = f

and for allt > 0: i.e. the specific potential energy ofΦ is a constant.
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A natural question is whether there is chance that the systemapproaches a
stationary state. This has been investigated (P.Garrido, GG) in the case of a
system of hard disks.

1 T2T
E

y

x

Typical configuration of the model simulated. The disks in the white part
(bulk particles) are accelerated in the y direction by a driving field E. The
disks at the grey boxes act as thermal baths
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The next step is to study existence of stationary states withtemperatures at
±∞ different:ρ±∞(qn) correspond toρ±, β±.

Lebowitz (1959):We try to findΓ-space ensembles that will represent
systems not in equilibrium in the same way that microcanonical, canonical,
g.c. ensembles represent systems in equilibrium... Andthere is of course no
priori assurance that such a parallel can be made

−∞

Fig.1: A hyperboloid-like containerΩ.
Shape is symbolic (d=3)

Stationary BBGKY hierarchy(hard core):

+∞

∂tρ(pn, qn) = 0 =
n∑

i=1

(
− pi · ∂iρ(pn, qn)

+

∫

σ(qi ,q′n)
ω · (π − pi) ρ(pn, qn, π, qi + rω)dσω dπ

)

Work in progress(Gentile,Giuliani)

Granada13-17 September 201013



Gqn(pn)
def
=

e−
1
2β(qn)pn·pn

√
(2π)nd detβ(qn)−1

, : xk :
def
= (2C)k/2Hk(

x
√

2C
)

Look for BBGKY solutionexpanded in Wick (Hermite) monomials:

ρ(pn, qn) = Gqn(pn)
∑

A

ρA(qn) : pn
A :

: pA
n :

def
= :

n∏

k=1

d∏

α=1

(pkα)ak
α :, pk

def
= −

√
β(qi)

2
pk

BBGKY become a hierarchy in the coefficientsρA(qn).

Result 0: In the stationary case the functionsρA(qn) satisfy a hierarchy of
equations: for eachρA(qn) the hierarchy involvesρA′ (qm) with
m= n+ 1, |A′| = |A| or ρA′(qn) with |A′| = |A|, |A| + 2, |A| + 4.

This result is a simple algebraic check (a key cancellation:|A| + 6 is missing)

EvenA and oddA have independent equationswhich could be coupled by
boundary conditions: otherwiseρodd ≡ 0 would be possible
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Look for solutions, 0 of the odd correlations. Several exact solutions can
be found (disregarding boundary conditions at collisions)

ρodd(qn, pn) = δn>1

∑

iα

Cn,i ∂iαF̃(qn) · ∂piα

: pA
n :

ai !

with F̃(qn) =
∏n

i=1 F̃(qi) and withCn,i(A1, . . . ,An) depending only on
Aj , j , i andarbitraryprovided

∆F̃ − 1
2
∂β · ∂F̃
β

= 0 inΩ, ∂nF̃ = 0 in ∂Ω

Any relation betweeñF andβ leads to a nonlinear heat equation which
becomes∆T = 0 upon linearization.

Questions

(1) Are there solutions for the even correlations?
(2) How to determinẽF and the arbitrary constants?

We consider several possibilities
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Collision continuity : if p1, p2←→p′1, p
′
2 is a collision between a particle inq1

and one inq1 + rω (ω · (p2 − p1) < 0 )in the directionω then
ρ(qn, pn) = ρ(qn, p′n) if p′n differs frompn with p1, p2 are replaced byp′1, p

′
2.

This is a property considered in the literature: however it seems difficult
(impossible) to impose anddoubtful.

More promising is astochastic boundary condition at±∞

3∑

α=1

∂α

∫
ρ(p, q)pαQ(p)d3p =

∫

ω·(π−p)<0
|ω · (π − p)| d3pd3π

· dσω
(
Q(p′) G(p′)G(π′)ρ∅(q, q+ rω) −Q(p)ρ(p, q, π, q+ rω)

)

with G(p) = β
(d+1)/2
±

(2π)(d−1)/2 pn e−
1
2β±p

2
.

This may establis a relation between even and odd correlations: and allow us
to takeCn = 0 for n , 2 to determineC2F̃, once a solution for the even
correlations is found. Possible to low order inδ andz0.
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Other geometries can be considered: for instance conic geometry
β+∞

R
βR

O

Fig.2:Ω is a cone with vertex at O
truncated at a distance R from its
vertex; T(q) = T0 + τ(q) solves∆T
= 0 with ∂nT = 0 on∂Ω and value
τ− at bottom ofΩ andτ+ = 0

at∞: i.e. τ− = δ
R, τ+ = 0

with its special case

O

∞

Fig.3: A special case of Fig.2
the “exterior problem”, i.e.
the heat conduction outside a
ball: a “hot potato” problem.
It has an exact solution T(q).

R
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A geometry with a long cylinder which opens up in two reservoirs
+∞

−∞

L

Fig. 4
The containerΩ is a cylinder of dia-
meterξ and height L≫ ξ ≫ r conti-
nued into two cones extending to∞.

The interpolating inverse tempe-
rature β(q) will be close toβ+ at
the upper end of the cylinder and
close toβ− at the bottom.

ξ

In this essentially 1-dimensional geometry the temperature will have some
value at the top and the bottom (dictated from the boundary conditions at
±∞ and the solution of the heat equation) which will be interpolated
essentially linearly (“Saint-Venant’s principle”),butδT = O(L−1).

T−

T0

T+

ξ L

T−

T0

T+

ξ L
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Continuity? It is not clear why the correlation functions of a stationarystate
shoud be continuous at collisions,e.g.why

ρ(q1, p1, q1 + rω, p2) = ρ(q1, p
′
1, q1 + rω, p′2)

if p1, p2←→p′1, p
′
2 is a collision atq1 andq1 + rω (ω · (p2 − p1) < 0) in the

directionω.
Truethat this is conserved by dynamics; butno contradictionwith initial
states in whichdoes not hold. On the other hand even if holding at any finite
time it might fail to hold in the stationary statevia the following scenario

ρ′

ρ

r

←

λt ε

Fig.6: a pair correlationsρ(ε),
ρ′(ε) discontinuity developing
at t large: λt −−−−→t→∞ r.
For t = +∞ λt = r and discon-
tinuity is sharp.

The problem of which should be the appropriate boundary condition at
collisions is therefore open: is continuity a required property? are the
multiple collisions relevant (notice that they occurr in the hierarchy).
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