Thermostats, BBGKY hierarchy and Fourier law @
by Errico Presutti, Guido Gentil&, Alessandro Giuliarf, GG*@

The evolution of Equilibrium Statistical Mechanics starteith the analysis
of the thermodynamic limit and its importance in Nonequililm has also
been very often mentioned

First Noneq. problem is to understand that time evolutiomdividual
particles in insensitive to the motion of all but a few othartfeles near it (of
course “near” means within a distance that grows with time).

Difficulties:

(1) nonequilibrium— nonconservative forces aet systems “heat up™
need to remove heat to achieve stationarity

(2) conceptual diiculty: “how to do that”?. Microscopic mechanics is not
only “conservative” but also reversible.
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Thermostat models (review by Bonetto, Lebowitz, Rey-B&l200)

(0) (Lebowitz 1959, Feynman-Vernon 1963): finite systemdntact with
infinite ones which are “at equilibrium at”. It does not require to modify
the basic conservative and reversible nature of laws ofanoti

(1) (Nosé, Hoover, Evans, Morriss 198P984): finite systems in contact
with finite systems subject to forces that constrain thengerature, or
energy (or other quantities) constant.

(0): ok

(1): criticized as non-physically meaningful because efitiiroduction of
artificial forces.But Authors steadfastly argued thatsforces are artificial
but most resultsre notbecause thermostatting mechanism is irrelevant.

Of course for many the real interest of (1) is that it carsimeulated
computationallyand it led to new developments and ideas.
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Once defined the models the next question to address is

Lebowitz (1959)it is known experimentally, and we hope that it is possible
also to prove mathematically for our model, that all impott@atures of the
stationary state of a system conducting heat are indepéantidre details of
the interaction with its surroundings”

Hence the question is to see whether the models do lead atdeas
elementary transport properties in stationary states.

Equivalence

Evans-Searles (following an earlier work by Evans-Sarrharng attempted

a general equivalence proof of models like 0&1. Ruelle dises a special
case. Review by Bright-Evans-Searles.

Concrete examples
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Examples (few out of many varieties: model case8,4)

G

R Q, Q, Q,

X= (XO’ XO’ xla Xla Y xn’ xn)

mXgi = — 8;Uo(Xo) — Z 9iUg;j(Xo, Xj) + 0i'¥(X;) + @i(Xo)
j>0
m>"(]-i = - ain(Xj) - 6iU0,j(X0, Xj) + aiT(Xj) - aanji
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Interactions (Lebowitz 1959)

UX)= > ¢@-d),  j-ththermostat potential

a.q'€X;
Uo;j(Xo, Xj) = Z o(g-q) j-th thermostat-system
0eQ,q' €9
Y(X) = Z w(Q) confining wall potential
geX

Initial state: infinite Gibbs at given densigyand temperaturg(if1
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Trying to study precisely the equivalence problem we must

I) check {.e prove that models (0) (frictionless) are well defined: i.e. model
(0) defined first in finite volumé shows motions — X%A(t) which tend to
limit X(t) asA — oo. Thermodynamic limit existg1 absence of dissipation.

1) check (.e prove that models (1) also hate— XA (t) admits a limit
X(t): Thermodynamic limit existi presence of dissipation

1) check (i.e prove) that in both cases the intensive quantities are exact
constants of motioni.g. at least at finite times) the thermostats temperatures
(and other intensive quantities) are constant.

Geometry is essential, and alde= 3, to study heat conduction
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Kinetic-potential energy density, density and many obsleles are constant
with ug probability 1 at timet = 0: examples

1
lim By o)
Ao |AﬂQ] JA( ) ]

1
lim ————N;
A—»oo|A Qjl h.a(X) =

1
lIm —————Uj (X
Ao [A N QY A (x) =
This should remain true for all> 0 at leasf{(in the thermodynamic limit and
keeping in mind that dimension matters).

Existence: Consider theegularized motions a containei\, Q N Ap, Ap =
ball or radius 2r,,
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Theorem: With probabilityl particles of the initial state Kevolve so that
independently of the regularization box sizthose intially inAg (k< n)
(1) do not go too far :

1" (t)] < Vi C(Xo) kY2

(2) nor go too close to the walls

distancég™ (1), (Ui N A)) = c(Xo) kK ¥/r,,

(3) no accumulatiorof particles occurs around any particlé”l{t) initially
in Ag

Ni(t,n) < C(Xo) K4

(4) Motioninsensitiveto regularization
x") - xO(t)] < C(Xo) 1, & D2

¥ n > k. The ¥(t) is uniquefrictionless motion satisfying 1,2,3
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Models (1) (dissipative “unphysical” thermostats) (Ptas()

Comparison with frictionless possible via entropy prodrttateproperties.
Entropy: of thermostats increases by X? L' 2K 0,0 'd NksT; )]

def

oo(X) = Z kBTJ(x) Q= -X%- 0x;Uoj(Xo, Xj))

Unphysical friction is (for isoenergetic thermostatsifinitesimal

def Q

def :
Ujn = i = — Xj - 9Ugj(Xo, X
j,n deBT](X) Qj j j O,J( 0 J)

Phase space contractiofs not infinitesimal
o) =>" _ D Bo(Ko + Uo+ Wo) & o) + FX)
= keTi(x)
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Equivalence? (in therm. lim\, — o). Idea:
Q= wf Xj - 9jUpj(Xo, Xj) is O(1) (Sarman, Williams,Searles,Evari304)

henceq; = W = 0: infinitesimalasn — co.

ButisT;n(X) > c > 0 ??i.e. specific kinetic energy positive?

Theorem (Presultti, G) with yo—probability1 and large n

(a) specific K.E. stays 0 = a—->0 = unphysical forces disappear

n—
(0) liMpse S™x = liMpe S™9% Vi > 0= equivalence
(€) B — _o(x)m(d¥) phase space contracts

Entropy productionro(x) = volume contraction(x) + a time derivative
—F(%):
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= (average&fluctuations af) =(average&fluctuations ofyy).

In other words: very generally phase space contraction eaddntified with
the physically defined entropy production.

provided gj(x) is a constant of motion as— co andg;(Sx) = 5

Theorem: The specific kinetic energy of each thermostat, with
uo-probability 1, is constanti.e. thermostats temperatures are constantL.

More: if ® is anypair potential withy + £® superstable fog| small and
P(¢ + £®) (twice) differentiable at = 0 (i.e. “no phase trans.”))

def .
f(Sx) = Jim ———
n—0o0 n

PIRCOR(OES

I qaexa,
and for allt > 0: i.e.the specific potential energy dfis a constant
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A natural question is whether there is chance that the syafgnmoaches a

stationary state. This has been investigated (P.Garri@,iGthe case of a
system of hard disks.

Typical configuration of the model simulated. The disks @wthite part
(bulk particles) are accelerated in the y direction by a driyfield E. The
disks at the grey boxes act as thermal baths
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The next step is to study existence of stationary statestesitiperatures at
+co different:p.(qn) correspond t@.., B

Lebowitz (1959):We try to findI'-space ensembles that will represent
systems not in equilibrium in the same way that microcaredp@anonical,
g.c. ensembles represent systems in equilibriusndthere is of course no
priori assurfgloce that such a parallel can be made

Fig.1: A hyperboloid-like containef.
> < Shape is symbolic &B)

Statlonary BBGKY hierarchghard core)
=00 p(Pn, An) = 0 = ( — i - 3ip(Pn, Gn)

i=1
+ f w - (= pi) p(Pn, Qn, 77, G + rw)do, d7r)
o (ai,an)
Work in progres¢Gentile,Giuliani)
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—%.B(Qn)Pn'Pn
" C ok ot (==
V(@2m) detB(an) v2C

Look for BBGKY solutionexpanded in Wick (Hermite) monomials:

G, (pr) = )

p(Pns tn) = Gay(Pn) ) palCn) : Pr :

A
n d
oA def = ek _def [B(a)
P = -l_”_[(pka)a‘k* i’ pkée - Tlpk
k=1 a=1
BBGKY become a hierarchy in the cieientspa(qn).

Result O: In the stationary case the functiopg(qn) satisfy a hierarchy of
equations: for eaclpa(qn) the hierarchy involvepa (gm) with
m=n+ 1A =|A of pa(0n) With |A'| = A, |A] + 2, |A] + 4.

This result is a simple algebraic check (a key cancellatin: 6 is missing
EvenA and oddA have independent equatiowhich could be coupled by
boundary conditions: otherwiggqyq = 0 would be possible
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Look for solutions# 0 of the odd correlations. Several exact solutions can
be found (disregarding boundary conditions at collisions)

ph:

Podd(Cn, Pn) = On>1 Z Chi 3ich(Qn) - Op, al

i
with F(qn) = [T, F(q) and withCp;(A4, .. ., As) depending only on
A, ] # 1 andarbitraryprovided

— 168-6F
AF - 1P

5 =0inQ, dnF = 0inoQ

Any relation betweefr andg leads to a nonlinear heat equation which
become&T = 0 upon linearization.

Questions

(1) Are there solutions for the even correlations?
(2) How to determiné and the arbitrary constants?

We consider several possibilities
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Collision continuity : if p1, p2«<—p7, p; is a collision between a particle @
and one i + rw (w - (P2 — p1) < 0)in the directionw then
£(@n, Pn) = p(dn, pr) if py, differs fromp, with py, p2 are replaced by, p;.

This is a property considered in the literature: howeveeérss dificult
(impossible) to impose antbubtful

More promising is atochastic boundary condition ato
3
>0, [ p.0p. QIR = [ o (- Pl dpen

1 w-(m—p)<0
- doro (Q(P') G(P')G(r )0 (@ G + rw) = QP)A(P, G 7, G + Fw))

(d+1)/2

. = 1
with G(p) = (2’;)(7),2 pn € 357,

This may establis a relation between even and odd corretatand allow us
to takeC, = 0 for n # 2 to determinéC,F, once a solution for the even
correlations is foundPossible to low order i andz,.
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Other geometries can be considered: for instance conic giepm

+00
Fig.2:Q s a cone with vertex at O
truncated at a distance R from its
vertex; T(q) = To + 7(q) solvesAT
= 0withd,T = 00noQ and value
7_ at bottom ofQ andr, =0
BrRY at co: i.e.‘r,:%,n:O
v IR
\ W}
Oe
with its special case
o
Fig.3: A special case of Fig.2
R the “exterior problem”, i.e.
@ the heat conduction outside a

ball: a “hot potato” problem.
It has an exact solution ().
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A geometry with a long cylinder which opens up in two resersoi

+00
O Fig. 4

The containeK is a cylinder of dia-
meter¢ and height s & > r conti-
nued into two cones extendingda

The interpolating inverse tempe-
rature 8(q) will be close tg3, at
the upper end of the cylinder and

Q_Oo close to3- at the bottom.

In this essentially 1-dimensional geometry the tempeeatiill have some
value at the top and the bottom (dictated from the boundangditions at
+oo and the solution of the heat equation) which will be integped
essentially linearly (“Saint-Venant's principle’utsT = O(L™1).
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Continuity? Itis not clear why the correlation functions of a stationstate
shoud be continuous at collisioresg.why

P01, P, G + Fw, P2) = p(Q1, PL. 01 + Fw, P5)

if p1, p2¢<—p}, P, is a collision aig; andq; + rw (w - (P2 — p1) < 0) in the
directionw.

Truethat this is conserved by dynamics; mat contradictiorwith initial

states in whicldoes not holdOn the other hand even if holding at any finite
time it might fail to hold in the stationary statga the following scenario

— Fig.6: a pair correlationsp(e),
o 0’ (&) discontinuity developing
at t large: A, ="
Fort = +o0 4; = r and discon-
tinuity is sharp.
— >
r A &
The problem of which should be the appropriate boundary itioncht
collisions is therefore open: is continuity a required gndp? are the
multiple collisions relevant (notice that they occurr ie thierarchy).
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