Fluctuationsand Symmetriesin Dynamical Systems

The time reversal symmetry in classical systems is simplyoity reversal

[(Tn, Pn) = (An, —Pn)

It is an isometry which anticommmutes with evolutionxif> x(t) = Sxis
the map solution of the equations of motion then

ISx = StIx

Its consequences have been studied from many aspects.
Consider in general a dynamical system described bffardntial equation

x = f(x), XeM

whereM is a smooth bounded manifold.

In applications to nonequilibrium statistical mechaniagtion, in many
models, is not volume preserving because it is not Hamatoaithough
time reversal is still preserved as an isometric symmi&try: S.i
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It has been remarked that time reversal puts some consta@irftuctuations
in systems that evolve towards non equilibrium starfiogn an equilibrium
stateup. Namely if

o(X) = —divergence= -9 - f(X), x = fo(X) + EQ(X)
with X = fo(X) a volume preserving evolution then asking the question

which is the probability that in timethe volume contracts by the amount
A= fot o (SX)dt, compared to that of the opposite evert?

answer :
Ea = set of points with contractioA;
at timet becomesSS & with 10(SER) = e uo(Ea), by definition.
Then&, def iISiEa is the set of points which contract lyA
e b o(sisndr — o Jo (S-S ixdr _ o Jy o(iS--Sx)dr
= gt b oliSdr = A
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In other words the s&ia of points which contract by in timet becomes the

set of points whose time reversed images is th6§§§f iS:Ea which
contract byA. The measures of such sets agéSa) and

1o(iSEn) = o(En)e™ = po(ER)

Ho(En) _
Ho(Ep)
for anyA (as long as it is “possible”. (Evans-Searles 994).

This has been calledransient fluctuation theorémmit is extremely general
and does not depend on any chaoticity assumption. Jussieiigy and
time reversal symmetry.

A similar result is “Jarzinsky relation”; this deals with protocol” i.e. a

fixed procedure to act on a system that is initially in a Gibdpgikbrium po

with HamiltonianHg so that during the protocol the evolution is governed by
a HamiltoniarH; which at the end of the processHs.
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Select initial dat with distributiongg and follow evolution up to timd:
sampling many times the initial daxa= (p, ) getmany final data
Srx = (P, q)-

Study their statistics (i.eg-e "™ dx).

. def
Then ifW(p', q) = (Hr (P, ) — Ho(p, ),

1 _ ;o 20 _aviyay L
_— e AHr(P.) = 20 o BWP.0) — gBHo(p.0)
ZTe dpdq = Z e dp'dq

.
This is an instance dflonte Carlo methotdin particular it yields

e’ﬁ(FT*FO) — < e’ﬁW >ll0

The similarity is that also in this case the results are prtigeeof the
equilibrium states and requiire “no assumptions”.
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What about the stationary states out of equilibrium?
In this case stronger assumptions are needesirong chaos.

For instancediscrete time case: £ n) one can assume that the system is
smooth hyperbolic and transitive

This means that points in phase space can be coded into seguEn
symbolsy = (yi);Z_, adapted to the dymamics

i=—c0

Xe= (¥t = SX—(Yir1)iZ o

“Markovian”: there is a “compatibility matrixMap, = 0, 1 such that the
codesy of points«— M,, ., =1

Smoothnesss invariant distribution giving the statistics of motionaiing
with random data chosen with a distributiofx)dx (anyp), called

SRB distribution

is a short rang&ibbs statever the space of symbols; transitivity it is
unique

Furthermordime reversal i3k — y_x and the Gibbs state has an interaction
potential related to the expansion rates
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Precisely this means that it is given formally by the energyction
HG) = H(01) = ; A7)
just like in the Ising model the Gibbs state is defined by a fdremergy
H=330), )=y = H=) gk
k k

ande ) is the expansion of a surface element in the expanding plane
through the poink corresponding to.
Finally

e = M O)AW)

Then the followingfluctuation theorencan be proved as a consequence of
the Gibbsian nature of the SRB distributiogrs



def .. . . ..
If oy = (o )sre> 0, the system is time reversible, hyperbolic, transitive

)
p(¥) dﬁf% fo S

(o

then p* > 1) (Cohen, G discrete time, Gentile continuous time)

Psre(p(X) ~ p) oThr

PareP0) ~ —p) T~ Ipl<Pp

SettingA & p(X)o-, T this becomes

PsrdA) A

Psre(—A)
lookssimilar to transient fluctuation th.: but veryffifirent because it deals
with the SRB distribution (which is singular) rather tharttwinon singular)
equilibrium distributions.

There are many simulations done to test the FR: however | lafow
experiment testing it. All experiments | know of test thenseent fluctuation.
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Of course it makes no sense to make an experiment to testi@theo

But assumptions for theorem are too strong; doubt hey afiiddlin any
concrete application other that a mathematical.

TheChaotic hypothesi@Cohen, G) says: a system empirically chaotic can
be regarded as transitive hyperbolic: therefore if rebdisi if fulfilled the
phase space contraction satisfiészctuation relationthis is not a theorem
but a physical principle and therefore it should be tested.

Chaotic hypothesis (CH) Motions developing on the attracting set for map
S representing the evolution of a chaotic system of pagidbserved in
discrete time via a choice of timing evelltsmay be regarded as motions of
transitive hyperbolic system.

The FT is interesting because it is related to other results
1) If the motion isx = fp(X) + E - g(X), reversible transitive hyperboic then
J(X) d=e‘(6Ea-(x) then FT implies
def 1r~
0 (Je )E=0 = Li =L = Ef (Ji(SX)J(x) ) dt
that can be interpreted &nsager reciprocityandGreen-Kubo formula
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(2) Fluctuation Patt2erns: Under the FT assumptions, given

a) Fj = observable

b) pattern:g;(t), v € [-7, 7]

joint SRB probabilities that £Sx) follows patterng;(t) or “time reversed
pattern” +¢;(—t) (the sign depending on the parity of) fare related by

= exppo)

where sign choice is opposite to the parity of;Fand pdﬁf% f_% "frix) dt.
2 +

The relation holds for patterns which can be realized witihadgbility that
does not vanish faster than exponentially in tirmed for allF’s.

It is worth pointing out that the SRB distribution can be mieted as a
uniform distribution over the attractor

The coding into sequences makes it possible to divide irts ttee phase
space so that each céll/ consists of the points that are coded int
Y_N,- - -» YN DEtween tlme-N N.



Time evolution is is a non invertible map of the discretizethts.

Time evolution map in the discrete representatiappears, in each coarse
cell, as a family of points regularly arranged on a finite nemiif unstable
manifolds

The attractorA is the set of points over which it is invertible. Transitjvit
insures that the the numbaf(y) of points of A in the cellC,.

The number is subject to a strong compatibility constratris proportional
to the inverse of the expansion rate along the unstable oigmif*®.

Then averages are computed with a uniform distributmver the points on
the attractotA

Ly NOFG)
ZyNQ@)



hence if; (y) IogA (y)

%, € PF(@)
(F)= —Zy A0
espressing the SRB distribution.

If evolution is reversible (as in above model)such that? = 1,1S= SI.
Then/l-(ly) = —/ls(y)

Hence ifp = 2 311~ 1”2_3+X), oy =(0)>0

P.p)  Zyomed® ' ? Ypmea? N oY
P-(-p) 2y, -plixed et 2y pfixed et 2y pfixed gt

_ ATPo:

because-4i(y) — As(y) = po..

no parameters, model independémtovided reversible).



