
Fluctuations and Symmetries in Dynamical Systems

The time reversal symmetry in classical systems is simply velocity reversal

I (qn, pn) = (qn,−pn)

It is an isometry which anticommmutes with evolution: ifx→ x(t) = Stx is
the map solution of the equations of motion then

IStx = S−tIx

Its consequences have been studied from many aspects.
Consider in general a dynamical system described by a differential equation

ẋ = f (x), x ∈ M

whereM is a smooth bounded manifold.
In applications to nonequilibrium statistical mechanics motion, in many
models, is not volume preserving because it is not Hamiltonian although
time reversal is still preserved as an isometric symmetryiSt = S−ti
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It has been remarked that time reversal puts some constraints on fluctuations
in systems that evolve towards non equilibrium startingfrom an equilibrium
stateµ0. Namely if

σ(x) = −divergence= −∂ · f (x), ẋ = f0(x) + Eg(x)

with ẋ = f0(x) a volume preserving evolution then asking the question

which is the probability that in timet the volume contracts by the amount
A =
∫ t

0
σ(Stx)dt, compared to that of the opposite event−A?

answer :

EA = set of points with contractionA;

at timet becomesStEA with µ0(StEA) = e−Aµ0(EA), by definition.

ThenE−A
def
= iStEA is the set of points which contract by−A

e−
∫ τ
0
σ(Sτ iStx)dτ ≡ e−

∫ t

0
σ(SτS−t ix)dτ ≡ e−

∫ t

0
σ(iS−τStx)dτ

≡ e+
∫ τ
0
σ(iSt−τx)dτ ≡ eA
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In other words the setEA of points which contract byA in time t becomes the

set of points whose time reversed images is the setE−A
def
= iStEA which

contract byA. The measures of such sets areµ0(EA) and
µ0(iStEA) ≡ µ0(EA)e−A ≡ µ0(E−A)

µ0(EA)
µ0(E−A)

≡ eA

for anyA (as long as it is “possible”. (Evans-Searles 994).

This has been called “transient fluctuation theorem”. It is extremely general
and does not depend on any chaoticity assumption. Just reversibility and
time reversal symmetry.

A similar result is “Jarzinsky relation”: this deals with a “protocol” i.e. a
fixed procedure to act on a system that is initially in a Gibbs equilibrium µ0

with HamiltonianH0 so that during the protocol the evolution is governed by
a HamiltonianHt which at the end of the process isHT.
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Select initial datax with distributionµ0 and follow evolution up to timeT:
sampling many times the initial datax = (p, q) getmany final data
STx = (p′, q′).

Study their statistics ( i.e.1Z0
e−H0(S−Tx)dx).

Then ifW(p′, q′)
def
= (HT(p′, q′) − H0(p, q),

1
ZT

e−βHT(p′ ,q′)dp′dq′ ≡
Z0

ZT
e−βW(p′ ,q′) 1

Z0
e−βH0(p,q)dp′dq′

This is an instance ofMonte Carlo method: in particular it yields

e−β(FT−F0)
= 〈 e−βW 〉µ0

The similarity is that also in this case the results are properties of the
equilibrium states and requiire “no assumptions”.
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What about the stationary states out of equilibrium?

In this case stronger assumptions are needed⇒ strong chaos.

For instance (discrete time case: t= n) one can assume that the system is
smooth hyperbolic and transitive

This means that points in phase space can be coded into sequences of
symbolsγ = (γi)∞i=−∞ adapted to the dymamics

x←→(γi)
∞
i=−∞ ≡ Sx←→(γi+1)

∞
i=−∞

“Markovian”: there is a “compatibility matrix”Ma,b = 0, 1 such that the
codesγ of points←→ Mγi ,γi+1 ≡ 1

Smoothness⇒ invariant distribution giving the statistics of motions starting
with random data chosen with a distributionρ(x)dx (anyρ), called
SRB distribution,
is a short rangeGibbs stateover the space of symbols; transitivity⇒ it is
unique.

Furthermoretime reversal isγk → γ−k and the Gibbs state has an interaction
potential related to the expansion rates
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Precisely this means that it is given formally by the energy function

H(γ) ≡ H((γi)∞−∞ =
∑

k

Λ+(τkγ)

just like in the Ising model the Gibbs state is defined by a formal energy

H =
∑

k

J(τkγ), J(γ) = γ0γ1 ⇒ H =
∑

k

gkγk+1

andeΛ+(γ) is the expansion of a surface element in the expanding plane
through the pointx corresponding toγ.
Finally

e−σ(x)
= eΛ+(γ)+Λ−(γ)

Then the followingfluctuation theoremcan be proved as a consequence of
the Gibbsian nature of the SRB distributionµSRB



If σ+
def
= 〈σ 〉SRB> 0, the system is time reversible, hyperbolic, transitive

p(x)
def
=

1
T

∫ T

0

σ(Stx)
σ+

dt

then (p∗ ≥ 1) (Cohen, G discrete time, Gentile continuous time)

PSRB(p(x) ∼ p)
PSRB(p(x) ∼ −p)

−−−−→
T→∞

eTpσ+ , |p| ≤ p∗

SettingA
def
= p(x)σ+T this becomes

PSRB(A)
PSRB(−A)

= eA

lookssimilar to transient fluctuation th.: but very different because it deals
with the SRB distribution (which is singular) rather than with (non singular)
equilibrium distributions.

There are many simulations done to test the FR: however I knowof no
experiment testing it. All experiments I know of test the transient fluctuation.
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Of course it makes no sense to make an experiment to test a theorem.

But assumptions for theorem are too strong; doubt hey are fulfilled in any
concrete application other that a mathematical.

TheChaotic hypothesis(Cohen, G) says: a system empirically chaotic can
be regarded as transitive hyperbolic: therefore if reversibility if fulfilled the
phase space contraction satisfies aFluctuation relation: this is not a theorem
but a physical principle and therefore it should be tested.

Chaotic hypothesis (CH) Motions developing on the attracting set for map
S representing the evolution of a chaotic system of particles, observed in
discrete time via a choice of timing eventsΣ, may be regarded as motions of
transitive hyperbolic system.

The FT is interesting because it is related to other results

1) If the motion isẋ = f0(x) + E · g(x), reversible transitive hyperboic then

J(x)
def
= ∂Eσ(x) then FT implies

∂Ei 〈 JE 〉|E=0
def
= Lij = Lji =

1
2

∫ ∞
−∞

〈 Ji(Stx)Jj(x) 〉0dt

that can be interpreted asOnsager reciprocityandGreen-Kubo formula.
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(2) Fluctuation Patt2erns: Under the FT assumptions, given
a) Fj = observable
b) pattern:ϕj(t), τ ∈ [−τ, τ]
joint SRB probabilities that Fj(Stx) follows patternϕj(t) or “time reversed
pattern” ±ϕj(−t) (the sign depending on the parity of Fj) are related by

PSRB(|Fj(Stx) − ϕj(t)|j=1,...,n, p)

PSRB(|Fj(Stx) ∓ ϕj(−t)|j=1,...,n < ε,−p)
= exp(τpσ+)

where sign choice∓ is opposite to the parity of Fj and p
def
=

1
τ

∫ τ
2

− τ2

σ(Stx)
σ+

dt.

The relation holds for patterns which can be realized with a probability that
does not vanish faster than exponentially in time.and for allF’s.

It is worth pointing out that the SRB distribution can be interpreted as a
uniform distribution over the attractor.

The coding into sequences makes it possible to divide into cells the phase
space so that each cellCγ

N
consists of the points that are coded int

γ−N, . . . , γN between time−N,N.



Time evolution is is a non invertible map of the discretized points.

Time evolution map in the discrete representationA appears, in each coarse
cell, as a family of points regularly arranged on a finite number of unstable
manifolds

The attractorA is the set of points over which it is invertible. Transitivity
insures that the the numberN(γ) of points ofA in the cellCγ.

The number is subject to a strong compatibility constraint:it is proportional
to the inverse of the expansion rate along the unstable manifold e−Λ+(γ).

Then averages are computed with a uniform distribution!over the points on
the attractorA

〈F 〉 =

∑
γN(γ)F(γ)∑
γN(γ)



hence ifλi(γ)
def
= logΛi(γ)

〈F 〉 =

∑
γ e−λi(γ)F(γ)
∑
γ e−λi(γ)

espressing the SRB distribution.

If evolution is reversible (as in above models)∃I such thatI2
= 1, IS= S−1I .

Thenλi(Iγ) = −λs(γ)

Hence ifp = 1
τ

∑τ−1
j=0

σ(Sj x)
σ+

, σ+ = 〈σ 〉 > 0

Pτ(p)
Pτ(−p)

=

∑
γ,pfixed e−λi(γ)

∑
γ,−pfixed e−λi (γ)

=

∑
γ,pfixed e−λi(γ)

∑
γ,pfixed e−λi(Iγ)

=

∑
γ,pfixed e−λi(γ)

∑
γ,pfixed eλs(γ)

= eτpσ+

because−λi(γ) − λs(γ) = pσ+τ.

no parameters, model independent(provided reversible).


