
Thermostats equivalence in the thermodymamic limit

by Errico Presutti, GG

The evolution of Equilibrium Statistical Mechanics started with the analysis
of the thermodynamic limit.

Its importance in Nonequilibrium has been very often mentioned, although it
was possible(but a bad idea)to discard the problem on the grounds that
real systems are finite.

First Noneq. problem is to build a theory of stationary state.

Difficulties: nonequilibrium→ nonconservative forces act→ systems “heat
up”→ need to remove heat to achieve stationarity→ conceptual difficulty:
“how to do that”?. Microscopic mechanincs is not only “conservative” but
also reversible.
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Thermostat models:

(0) (Lebowitz 1959, Feynman-Vernon 1963): finite system in contact with
infinite ones which are “at equilibrium at∞”. It does not require to modify
the basic conservative and reversible nature of laws of motion.

(1) (Nosé, Hoover, Evans, Morriss 1982∼1984): finite systems in contact
with finite systems subject to forces that constrain their temperature, or
energy (or other quantities) constant.
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(0): ok

(1): criticized as non-physically meaningful because of the introduction of
artificial forces.But the Authors have relentlessly argued thatyesthe forces
are artificial but the results are not because the thermostatting mechanism is
irrelevant.

Lebowitz (1959)As was stated in the introduction it is known
experimentally, and we hope that it is possible also to provemathematically
for our model, that all important features of the stationarystate of a system
conducting heat are independent of the details of the interaction with iits
surroundings

This reminds: size and ensemble independence of thermodynamic functions
in equilibrium

Evans-Searles (following an earlier work by Evans-Sarman)have attempted
a general equivalence proof of models like 0&1. Ruelle discusses a special
case. Review by Bright-Evans-Searles.
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Examples (few out of many varieties: model cases a=0,1)

x = (X0, Ẋ0,X1, Ẋ1, . . . ,Xn, Ẋn)

C1

C2

C3

C0

Ω
1

Ω
0

Ω
2

mẌ0i = − ∂iU0(X0) −
∑

j>0

∂iU0,j(X0,X j) + ∂iΨ(X j) + Φi(X0)

mẌ ji = − ∂iUj(X j) − ∂iU0,j(X0,X j) + ∂iΨ(X j) − aαjẊ ji
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Interactions (Lebowitz 1959)

Uj(X j) =
∑

q,q′∈X j

ϕ(q− q′), j-th thermostat potential

U0,j(X0,X j) =
∑

q∈Ω0,q′∈Ωj

ϕ(q− q′) j-th thermostat-system

Ψ(X) =
∑

q∈X
ψ(q) confining wall potential

ϕ0

ϕ

ψ ∼ ( r
|dwall| )

−α ϕ0

rϕ
Initial state: infinite Gibbs at given densityδj and temperaturesβ−1

j

Paris IHP 17 May 2010



Trying to study precisely the equivalence problem we must

I) check (i.e prove) that models (0) (frictionless) are well defined: i.e. model
(0) defined first in finite volumeΛ shows motionst → X0,Λ(t) which tend to
limit X(t) asΛ→ ∞. Thermodynamic limit existsin absence of dissipation.

II) check (i.e prove) that models (1) also havet → X1,Λ(t) admits a limit
X(t): Thermodynamic limit existsin presence of dissipation

III) check (i.e prove) that in both cases the intensive quantities are exact
constants of motion (i.e. at least at finite times the thermostats temperatures
(and other intensive quantities) are constant.

Geometry is essential, and alsod = 3, to study heat conduction
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Kinetic-potential energy density, density and many observables are constant
with µ0 probability 1 at timet = 0: examples

lim
Λ→∞

1
|Λ ∩ Ωj |

Kj,Λ(x) =
d
2
β−1

j δj

lim
Λ→∞

1
|Λ ∩ Ωj |

Nj,Λ(x) = δj

lim
Λ→∞

1
|Λ ∩ Ωj |

Uj,Λ(x) = uj

This should remain true for allt > 0 at least(in the thermodynamic limit and
keeping in mind that dimension matters).
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Frictionless thermostats: “easy” adaptation to new geometry of classics

Existence:Theorem by Caglioti, Marchioro, Pulvirenti (2000)

Remarkableconclusion of a series of works by

Lanford (1968) 1 dimension (a.e. for general states)

Sinai (1971) 1 dimension (a.e. for general states, proving cluster dynamics)

Marchioro, Pellegrinotti, Presutti (1974) (a.e. only for Gibbs states arbitrary
dim.)

Dobrushin Fritz (1975) (a.e. for dim.= 2 general states)
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W(x; ξ,R)
def
= total energy+ number of particles in ballB(ξ,R)

E(x)
def
= sup

ξ

sup
R>(log+( ξ

rϕ
))1/d

W(x; ξ,R)
Rd

LetNi(t, n)= number of particles withinr of q(n,0)
i (t) and letT > 0,

V1 =

√

2ϕ0

m andΛk= ball of radius 2krϕ.

Theorem: ∃ C(E), c(E)−1, ↑ E, and if qi(0) ∈ Λk ∀t ≤ T,

(1) |q̇(n,0)(t)| ≤ V1 C(E) k1/2,

(2) distance
(

q(n,0)
i (t), ∂(∪jΩj ∩ Λ)

) ≥ c(E) k−3/2α rϕ

(3) Ni(t, n) ≤ C(E) k3/4

(4) |x(n,0)
i (t) − x(0)

i (t)| ≤ C(E) rϕ e−c(E)2nd/2

∀ n > k. The x(0)(t) is unique frictionless motion satisfying 1,2,3



Models (2) (dissipative “unphysical” thermostats) (Presutti, G)

Comparison with frictionless models is made possible via the properties of
the entropy production rate.

Entropy: of thermostats increases by
[

Ẋ2
j

def
= 2Kj,Λn(x)

def
= d NjkBTj(x)

]

σ0(x) =
∑

j>0

Qj

kBTj(x)
, Qj

def
= − Ẋ j · ∂X j U0,j(X0,X j))

Unphysical friction is (for isoenergetic thermostats)infinitesimal

αj,n
def
=

Qj

d NjkBTj(x)
, Qj

def
= − Ẋ j · ∂jU0,j(X0,X j)

Phase space contractionis not infinitesimal

σ(x) =
∑

j>0

Qj

kBT j (x)
+ β0(K̇0 + U̇0 + Ψ̇0)

def
= σ0(x) + Ḟ(x)



Equivalence? (in therm. lim.Λn → ∞)

Idea: Qj
def
= − Ẋ j · ∂jU0,j(X0,X j) is O(1) (Williams,Searles,Evans2004)

henceαj =
Qj

d NjkBTj,n(x) ⇒ 0: infinitesimalasn→ ∞.

But isTj,n(x) ≥ c > 0 ??

Theorem (Presutti, G):with µ0–probability1

(a)
K j ,Λn (S(n,1)x)
|Λn∩Ωj | ≥ 1

4 dδj kBTj for n large (henceα−−−−→n→∞ 0).

(b) limn→∞ S(n,1)
t x = limn→∞ S(n,0)

t x for all t > 0.

(c) dµt(dx)
dt = −σ(x) µt(dx)

Entropy production= volume contraction+ a time derivative:
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⇒ (average&fluctuations ofσ) ≡ ( average&fluctuations ofσ0)

In other words: very generally phase space contraction can be identified with
the physically defined entropy production.

provided βj(x) is a constant of motion asn→ ∞ andβj(Stx) = βj

hence

Theorem: LetΓ be a pair potential andϕ + εΓ be superstable for|ε| small
and P(ϕ + εΓ) (twice) differentiable atε = 0 (i.e. “no phase trans.”))

g(Stx)
def
= lim
Λn→∞

1
Λn ∩ Ωj

∑

q,q′∈x
Γ(q(t) − q′(t)) = g

with µ0-probability1 and for all t> 0: i.e. g(x) constant of motion.
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Method: “Entropy estimates” for thermostatted motions

(I) Proof that kinetic energy per particle (in theΛn–regularized motion) stays
> d

4δj β
−1
j with µ0-probability 1 fort ≤ Θ.

(II) Proof that the number of particles and their (kinetic+wall) energy in a
unit box grows at most with a powerγ ∈ ( 1

2 , 1) of (log+(|ξ|/rϕ))
1
2 · (logn)γ

Combining ideas of Sinai, Fritz-Dobrushin, and Marchioro,Pellegrinotti,
Presutti, Pulvirenti (1975,1976).

Let ||x|| def
= maxξ∈Λn

max(NCξ (x),εCξ (x))

(log+(ξ/rϕ))1/2 where

Cξ
def
= unit cube centered atξ, NCξ

(x)= number of particles inCξ,

ε2
Cξ

def
= maxq∈Cξ

( 1
2q̇2 + ψ(q)). kinetic+wall energy
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1) Given 1> γ > 1
2, define forx s.t.E(x) ≤ E, thestopping timeτ(x)

Tn(x)
def
= max

{

t : t ≤ Θ : ∀ τ < t,

Kj,n(S(n,1)
τ x)

ϕ0
> κ2nd, ‖S(n,1)

t x‖n < (logn)γ
}

.

2) show that before the stopping time frictionless evolution and
thermostatted evolution are very close for particles starting withinΛk

provided the cut-off n≫ k; henceentropy production remains uniformly
bounded

3) Check that theµ0-probability ofB def
= {x | x ∈ XE andTn(x) ≤ Θ} is

µ0(B) ≤ C e−c(logn)2γ
.

Via large deviations estimatesbased on the entropy production control:
which allows us the use the initial equilibrium distribution.
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The next step is to study existence of stationary states withtemperatures at
±∞ different:ρ±∞(qn) correspond toρ±, β±.

Lebowitz (1959):We try to findΓ-space ensembles that will represent
systems not in equilibrium in the same way that microcanonical, canonical,
g.c. ensembles represent systems in equilibrium... Andthere is of course no
priori assurance that such a parallel can be made

−∞

Fig.1: A hyperboloid-like containerΩ.
Shape is symbolic (d=3)

Stationary BBGKY hierarchy(hard core):

+∞

∂tρ(pn, qn) = 0 =
n
∑

i=1

(

− pi · ∂iρ(pn, qn)

+

∫

σ(qi ,q′n)
ω · (π − pi) ρ(pn, qn, π, qi + rω)dσω dπ

)

Work in progress (Gentile,Giuliani,G,Presutti)for the 81-th birthday.
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Estimate the probability ofXn
def
= {E(x) ≤ E; Tn(x) < Θ}.

(2) ⇒ bound on themax entropy production within the stopping time:
|
∫ τn(x)

0
σ(S(n,1)

t x)dt| ≤ C′ with C′ depending only onE.

For inst. estimate probab. that kinetic energy becomesG = 1/2 of its
µ0-almost sure asympt. value.G = 1

4Njdβ−1
j . IF µ0 were invariant

dsdτ
def
= (
∫

µ0(dx)|K̇|δ(K −G))dτ

dτ
dτ

dτ

G ds
Remark:all shaded volumes would have the sameµ0 volume!



Thenµ0(Xn) is bounded, ifC ≥ |
∫ τn(x)

0
σ(S−tx)dt|, by:

eC′Θ

∫

ds|K̇| ≡ eC′Θ

∫

µ0(dx)δ(K −G)|K̇|

thus,by a large (kinetic energy) deviation estimate

≤ e−γ|Λn|

with γ > 0: summable⇒ “Borel-Cantelli” (after a similar bound on the
second item appearing in definition of stopping time) yieldsthat the stopping
time must beΘ with µ0-prob 1.
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SomeDetails

Convergencex(n,0
i (t)→ x(0)

i (t), qi(0) ∈ Λk

un
k(t)

def
= max

qi (0)∈Λk

|q(n,0)
i (t) − q(n+1,0)

i (t)|

2k

2n

2n+1

Relation:q(n,0)
i (t) = q(n,0)

i (0)+ q̇(n,0)
i (0) t +

∫ t

0
fi(x(n,0)(τ)dτ→ comparison

subtract:n andn+ 1 relations (η = 3
2 +

3
α
) ⇒

un
k(t) ≤ Cnη

∫ t

0
un

k1
(τ)dτ k1 = k+ C

√
n

#iteration steps≫ ℓ = 2n/2 ⇒ |un
k(t)| ≤ C (nηΘ)ℓ

ℓ!



Why not “same” for thermostatted dynamics?

un
k(t) ≤ Cnη

∫ Θ

0
un

k1
(τ)dτ + C2−nd k1 = k+ C

√
n

#iteration steps is same≫ ℓ = 2n/2 BUT error CeC nη Θ 2−n d→ ∞

Up to Stopping time properties

|q̇(n,1)
i (t)| ≤ C V1

(

k logn)γ, |q(n,1)
i (t)| ≤ rϕ (2k + C

(

k logn)γ)

⇒ N ≤ C (k logn)dγ, ρ ≥ c (k logn)−2(dγ+1)/α

Only (k logn)η particles interact withqi ∈ Λk

Comparex(n,1)(t) andx(n,0)(t) ℓ times 2kℓ = 2k + ℓC (k logn)γ



Comparex(n,1)(t) andx(n,0)(t) ℓ times 2kℓ = 2k + ℓC (k logn)γ with
ℓ = ℓ∗ ∼ 2n/(logn)γ (ℓ∗ is largest s.t. 2kℓ < 2k+1)

ukℓ (t, n)

rϕ
≤ C (k logn)η

(

2−nd +

∫ t

0

ukℓ+1(s, n)ds

rϕΘ
)

Iterate. This time the Lyapunov exponent is small

uk(t, n)
rϕ

≤ eC (k logn)ηC(k logn)η2−dn+
(C (k logn)η)ℓ

∗

ℓ∗!
C (2k + k(logn)γ + k1/2)


