Thermostats equivalence in the thermodymamic limit
by Errico Presutti, GG

The evolution of Equilibrium Statistical Mechanics starteith the analysis
of the thermodynamic limit.

Its importance in Nonequilibrium has been very often merdih although it
was possiblébut a bad idea)to discard the problem on the grounds that
real systems are finite.

First Noneq. problem is to build a theory of stationary state

Difficulties: nonequilibrium- nonconservative forces aet systems “heat
up” — need to remove heat to achieve stationaritgonceptual diculty:
“how to do that"?. Microscopic mechanincs is not only “comnsive” but
also reversible.
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Thermostat models:

(0) (Lebowitz 1959, Feynman-Vernon 1963): finite systemdntact with
infinite ones which are “at equilibrium a$”. It does not require to modify
the basic conservative and reversible nature of laws ofanoti

(1) (Nosé, Hoover, Evans, Morriss 198P984): finite systems in contact
with finite systems subject to forces that constrain thengerature, or
energy (or other quantities) constant.

Paris IHP 17 May 2010



(0): ok

(2): criticized as non-physically meaningful because efititroduction of
artificial forces.But the Authors have relentlessly argued thasthe forces
are artificial but the results are not because the therntiogfaechanism is
irrelevant.

Lebowitz (1959)As was stated in the introduction it is known
experimentally, and we hope that it is possible also to proathematically
for our model, that all important features of the stationstate of a system
conducting heat are independent of the details of the ictierawith iits
surroundings

This reminds: size and ensemble independence of thermodgmfianctions
in equilibrium

Evans-Searles (following an earlier work by Evans-Sarrharng attempted
a general equivalence proof of models like 0&1. Ruelle dises a special
case. Review by Bright-Evans-Searles.
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Examples (few out of many varieties: model case8,4)

G

R Q, Q, Q,

X= (XO’ XO’ xla Xla Y xn’ xn)

MXq = — 8;Uo(Xo) — Z 9ilUoj(Xo, Xj) + 0iP(X;) + @i(Xo)
>0
m>"(]-i = - ain(Xj) - 6iU0,j(X0, Xj) + aiT(Xj) - aanji
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Interactions (Lebowitz 1959)

UX)= > ¢@-d),  j-ththermostat potential

a.q'€X;
Uo;j(Xo, Xj) = Z o(g-q) j-th thermostat-system
0eQ,q' €9
Y(X) = Z w(Q) confining wall potential
geX

Initial state: infinite Gibbs at given densigyand temperaturg(if1
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Trying to study precisely the equivalence problem we must

I) check {.e prove that models (0) (frictionless) are well defined: i.e. model
(0) defined first in finite volumé shows motions — X%A(t) which tend to
limit X(t) asA — oo. Thermodynamic limit existg1 absence of dissipation.

1) check (.e prove that models (1) also hate— XA (t) admits a limit
X(t): Thermodynamic limit existi presence of dissipation

1) check (i.e prove) that in both cases the intensive quantities are exact
constants of motioni.g. at least at finite times the thermostats temperatures
(and other intensive quantities) are constant.

Geometry is essential, and alde= 3, to study heat conduction
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Kinetic-potential energy density, density and many obsleles are constant
with ug probability 1 at timet = 0: examples

lim By o)
A—00 |AﬂQ] JA( ) !

1
lim ————N
A—»oo|A Qjl AW =

1
lim ————Uj A(X
A—»m|AmQ| A (x) =

This should remain true for all> 0 at leasf{(in the thermodynamic limit and
keeping in mind that dimension matters).
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Frictionless thermostats: “easy” adaptation to new gepnuétclassics
Existence: Theorem by Caglioti, Marchioro, Pulvirenti (2000)
Remarkableonclusion of a series of works by

Lanford (1968) 1 dimension (a.e. for general states)

Sinai (1971) 1 dimension (a.e. for general states, provimgter dynamics)

Marchioro, Pellegrinotti, Presutti (1974) (a.e. only fdbBs states arbitrary
dim.)

Dobrushin Fritz (1975) (a.e. for dim.2 general states)
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W(x; & R) “total energy+ number of particles in balB(¢, R)

W(x; &, R)

E(X) e sup  sup R

¢ Re(log, ()M

Let AVi(t, n)= number of particles withim of g"%(t) and letT > 0,
Vi = /%2 andA«= ball of radius 2r,.

Theorem: AC(E),c(E) L 1 &, andif q(0) e Ax Yt < T,

1)
)
®3)
(4)

16"O()] < Vi CE)KY?,
distanceg“ (1), (Ui Qy N A)) > c(E) k¥,
Ni(t,n) < C(&) k¥4

X"t -x20) < CE)r, e O™

v n > k. The ¥)(t) is unique frictionless motion satisfying 1,2,3



Models (2) (dissipative “unphysical” thermostats) (Ptas()
Comparison with frictionless models is made possible égdtoperties of
the entropy production rate

= dNksTj(¥)

Entropy: of thermostats increases b){ij « 2Kj A, (X) &« ]

def

oo(X) = Q= -X - 0x,Uoj(Xo, Xj))

j
;‘ keTi()’

Unphysical friction is (for isoenergetic thermostatsifinitesimal

def  Q

def .
B W Q = —Xj-9jUoj(Xo, Xj)

@jn

Phase space contractiors not infinitesimal

T JZ;‘ kB-?jj(X) +Bo(Ko+ Uo + ¥o) < oo(x) + F(x)



Equivalence? (in therm. lim\,, — )
Idea: Q L Xj - 0jUgj(Xo, Xj) is O(1) (Williams,Searles,Evarf)04

henceq; = W = 0: infinitesimalasn — co.

ButisTjn(X) >2c>0 ??

Theorem (Presultti, G) with yo—probability 1

(@) K"AA”(E(Q' > 1dgjksT, fornlarge  (hencer —=0).
(b) liMp_e S™x = limy e SO forallt > 0.

(€) LR = 5 (x) (X

Entropy production= volume contractionr a time derivative
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= (average&fluctuations af) = ( average&fluctuations af)
In other words: very generally phase space contraction eaddntified with
the physically defined entropy production.

provided gj(x) is a constant of motion as— oo andg;(Sx) = S
hence

Theorem: LetI" be a pair potential ang + I" be superstable fge| small
and Ry + &) (twice) djferentiable atc = 0 (i.e. “no phase trans."))

oS lim = > T - 0) = g

T qaex
with po-probability 1 and for all t > 0: i.e. g(x) constant of motion
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Method: “Entropy estimatédor thermostatted motions

() Proof that kinetic energy per particle (in tihg—regularized motion) stays
> §6; 87" with uo-probability 1 fort < ©.

(1) Proof that the number of particles and their (kinetieall) energy in a
unit box grows at most with a powere (%, 1) of (Iog+(|§|/r¢))% - (logny”

Combining ideas of Sinai, Fritz-Dobrushin, and Marchid?el|legrinotti,
Presutti, Pulvirenti (1975,1976).

(log, (¢/1,))12 where

def
Let[|X]| = maXea,

C: ©" unit cube centered &t Nc, (X)= number of particles i,
€2, &« MaXgec, (367 + ¥(0)). kinetic+wall energy
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1) Given1> vy > % define forx s.t. §(X) < E, thestopping time 7(X)

Tn(x)déEf max{t:t<@: Vr<t,
Ki n(S™Vx
—"”(j* L5 @ 1S < (logny

0

2) show that before the stopping time frictionless evolutiod a
thermostatted evolution are very close for particles istgmvithin Ag
provided the cut-fi n > k; henceentropy production remains uniformly
bounded

3) Check that theup-probability of 8 déef{x| x € Xg andTp(X) < O} is

L1o(B) < C e ellogn?

Via large deviations estimatésised on the entropy production control
which allows us the use the initial equilibrium distributio
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The next step is to study existence of stationary statestesitiperatures at
+co different:p.(qn) correspond t@.., B

Lebowitz (1959):We try to findI'-space ensembles that will represent
systems not in equilibrium in the same way that microcaredp@anonical,
g.c. ensembles represent systems in equilibriusndthere is of course no
priori assurfgloce that such a parallel can be made

Fig.1: A hyperboloid-like containef.
> < Shape is symbolic &B)

Statlonary BBGKY hierarchghard core)
=00 p(Pn, An) = 0 = ( — i - 3ip(Pn, Gn)

i=1
+ f w - (= pi) p(Pn, Qn, 77, G + rw)do, d7r)
o (ai,an)
Work in progress (Gentile,Giuliani,G,Presuftiy the 81-th birthday
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Estimate the probability ok, d:Gf{c'S(x) < E; Ta(X) < O}.

(2) = bound on themax entropy production within the stopping time

| fOT”(X) o(§™Dx)dt) < C’ with C’ depending only ofE.

For inst. estimate probab. that kinetic energy beco@esl/2 of its
uo-almost sure asympt. valué. = %N,— d,Bj‘l. IF uo were invariant

dsar Z'( | uo(dXIKIS(K - G))dr

Remark:all shaded volumes would have the sam&olume!



Thenuo(Xy) is bounded, itC > | [ o(S.x)dt, by:

&@fmmz§®fmwmm—®m
thus,by a large (kinetic energy) deviation estimate

< gl

with ¥ > 0: summable= “Borel-Cantelli” (after a similar bound on the
second item appearing in definition of stopping time) yieltdd the stopping
time must be® with ue-prob 1.
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SomeDetails
Convergence™(t) — Xt), qi(0) € Ax

def
ut) = max _(n,O)t _ g(n+10) t
k( ) q.(O)aelAk |q| ( ) q| ( )|

on+l

Relation:q"(t) = ¢"9(0) + 6"(0)t + [, f;(x"O(r)dr — comparison
subtractn andn + 1 relations g = 3 + 3) =

t
Ut < Cri f W(dr ki =k+Cyh
0

#iteration steps> £ = 22 = |u(t)| < C(n'}?)[




Why not “same” for thermostatted dynamigs

0]
u(t) < C f W ()dr+C2™ Kk =k+Cyh
0

#iteration steps is same ¢ = 2"/? BUT error Ce&M02d ;

Up to Stopping time properties
g™VM1 < CVa(klogny’,  1g™Y(t)l < r, (2 + C (k logn)”)

= N < C(klogn)®, p > c(klogn) 2@r+/e
Only (klogn)” particles interact witly € Ay

ComparexX™(t) andx™O(t) ¢ times X = 2% + ¢ C (klogn)”



Comparex™(t) andx™0(t) ¢ times % = 2X + ¢ C (klogn)” with
¢ = ~2"/(logn)” (¢ is largest s.t. 2 < 2k+1)

t.n t
Ul ognyr @2+ fukm(s,mds)
le 0 r,®

Iterate. This time the Lyapunov exponent is small

Uk(t, n) < eC (k logn)” C(k |Og n)nz—dn + (C (k Iog n)n)[*

C (2 +k(logn)” + k¥?)
ry Al



