
Methods and variations in KAM theory

I: Siegel’s Theorem in C

(1) z′ = eiωz + P (z) P polyn. min. deg. ≥ 2

Question: linearizable? or does ∃ Γ s.t.

z = ζ + Γ(ζ) & z′ = ζ′ + Γ(ζ′) ←→ ζ′ = eiωζ ??

Γ(eiωζ)− eiωΓ(ζ) = P (ζ + Γ(ζ)

Look for Γ(ζ) =
∑∞

k=2 γk zk
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Γ(eiωζ)− eiωΓ(ζ) = P (ζ + Γ(ζ))

Γ(ζ) =
∑∞

k=2 γk zk means (γ1
def
= 1):

∞∑

k=2

(eiω k − eiω) ζk γk =

∞∑

s=2

Ps

s!

s∏

i=1

(

∞∑

ki=1

ζkiγki)

Need: |∆k|
def
= |eiωk − eiω| ≥ 1

C|k|τ k 6= 1

←→ γk =

∞∑

s=2

1

∆k

Ps

s!

∑

k1+...+ks=k
ki≥1, s ≥ 2

γk1 · · · γks

Graphical representation
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γk =
∞∑

s=2

1

∆k

Ps

s!

∑

k1+...+ks=k
ki≥1

γk1 · · · γks

r v
(k) =

∑

s>0
k1+...+km=k−1

1

s! r v

(ks)

(ks−1)

(k2)

(k1)

Diagrammatic interpretation. Each line λ represents γkλ
. Iterate.
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r

k

v0

k1 v1

k2

v2

v3

v4

labels kvj on each non-top line λ count (# of preceding lines).

Val(θ)
def
=

( ∏

lines λ
kλ>1

1

∆λ

) ( ∏

nodes v

Psv

sv!

)

∆λ
def
= (eiωkλ − eiω) line propagator, k(θ) = k = # non-top lines
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Val(θ)
def
=

( ∏

lines λ

1

∆λ

) ( ∏

nodes v

Psv

sv!

)

is bounded by the maximum P
k

of |Ps|k times the number of trees:

number of trees ≤ 22k

times product of propagators |∆λ|−1.

Define scale of a propagator line to be n = 1, 0,−1,−2, . . .

1 if C|∆λ| ≥ 1 for n=1

n if 2n−1 < C|∆λ| ≤ 2n for n ≤ 0

Therefore

∑

θ with k lines

|Val(θ)| ≤ P
k
Ck22k

∏

n≤0

2−nNn

Nn = max number of lines of scale n in a tree with k lines
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P
k
Ck22k

∏

n≤0

2−2nNn

Siegel-Bryuno bound: ∃ ν0 s.t. for −n ≥ ν0

Nn(θ) ≤
2k

ε2−n/τ
− 1, ε

def
=

1

23/τ
if Nn > 0

ν0 ≤ −τ log2(
21/τ−1
21+3/τ ). Therefore

∑

k(θ)=k

|Val(θ) ≤ (PC22
∏

n≤−ν0

2−n 2
ε 2n/τ

)k(2ν0)kν0
def
= Bk

convergence for |ζ| ≤ B−1

Simple proof (Pöschel, 1984, [1]).
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Heuristic idea:

To obtain a line of scale n need at least 2−n/τ lines by Diophantine
property.

Once obtained as many more are needed to obtain a new one etc

Hence we expect that the total number be of the order of k/2−nτ
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Nn(θ) ≤
2k

ε2−n/τ
− 1, ε

def
=

1

23/τ
if Nn > 0

a) induction over number k of branches. If k < ε2−n/τ ⇒ Nn = 0
(Diophantine inequality)

|kλ| ≤ Nk ≤ Nε2−n/τ = 2−3/τ2−n/τ ⇒
C|∆λ| ≥

1
(kλ)τ ≥ 23−n > 2−n

b) If root scale = n and only 1 incoming line is root of a subtree θ
with Nn(θ) > 0: look for its first scale-n line calling θ the subtree
with it as root.

Then if θ/θ contains k ≥ 1
2ε2−n/τ lines, θ would contain

< k − 1
2ε2−n/τ :

Nn(θ) ≤ 1 +
2(k − k)

ε2−n/τ
− 1 =

2k

ε2−n/τ
− 1
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Or θ/θ contains k < 1
2ε2−n/τ lines, using

∆(k) = ∆(k − k) + ∆(k + 1)ei(k−k) ω

C|∆(k)| ≥ −2n + C|∆(k + 1)| ≥ −2n + (
1

2
ε2−n/τ + 1)−τ

=
2τ+32n

(1 + 21+3/τ2n/τ )τ
> 2n

for −n ≥ ν0 (e.g. ν0 = −τ log2
21/τ−1
21+3/τ ).

If root scale n and θ has more than one subtree with root scale n, or

if root scale > n trivial cases (because of the -1)
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Extensions:

(1) no need of P being a polynomial: holomorphic suffices

(2) no need to restrict to maps in one complex variable:

z′ = eiω z + P(z)

where z = (z1, . . . , zℓ), ω = (ω1, . . . , ωℓ), eiω z
def
= (ei ω1z1, . . . , e

i ωℓzℓ)

(3) Diophantine property: ∃C, τ > 0 s.t.

|eiω ·ν − ei ωj | ≥
1

C|ν|τ

for all integers ν ∈ Zℓ if ν 6= (0, . . . , 1, . . . , 0).

Proofs are essentally the same, [2]
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Quasi periodic motions: formal perturbation analysis

Simplest KAM problem: A = (A1, . . . , Aℓ) ∈ R
λ (actions),

α = (α1, . . . , αℓ) ∈ T
ℓ (angles) and Hamiltonian

H(A,α) =
1

2
A2 + εf(α), analytic in R

ℓ × T
ℓ

Let ω0 ≡ A0 be a “Diophantine rotation” of T
ℓ. Equations:

Ȧ = 0, α̇ = ω0 unperturbed

Ȧ = 0, α̇ = ω0 − ∂αf(α) perturbed

Question: does the unperturbed motion t→ (A0 = ω0, α = ψ + ω0t)
remain at least for ε small? i.e. is there a solution like

A =ω0 + Hε(ψ), α = ψ + hε(ψ)

t→(A(t),α(t)) with ψ(t) = ψ + ω0 t

Hε,hε analytic in ε,ψ
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In other words: is the unpertubed uniform rotation with velocity ω0

continued analytically in ε in presence of interaction? at least if ε is
small and ω0 is Diophantine: ∃C > 0, τ > 0 such that:

|ω0 · ν| ≥
1

C |ν|τ
, ∀ ν ∈ Z

ℓ, ν 6= 0

Answer: yes KAM theorem:

Kolmogorov, [3], (diophantine, analytic), followed by
Arnold, [4], (resonant, analytic), and
Moser, (diophantine, differentiable), [5]

Lindstedt series: the equations of motion are

α̈ = −ε∂αf(α)

and look for α(t) = ψ + ω0 t + hε(ψ + ω0 t), i .e

(ω0 · ∂ψ)2hε(ψ) = −ε∂αf(ψ + hε(ψ))
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(ω0 · ∂ψ)2hε(ψ) = −ε∂αf(ψ + hε(ψ))

Let hε(ψ) =
∑∞

k=1 εk h[k](ψ)

(ω0 · ∂ψ)2h[k](ψ) = −
∞∑

k=1

[
∂αf(ψ + h(ψ))

][k−1]

Developing by Taylors series (µ = 1, . . . , ℓ)

(ω0 · ∂ψ)2h[k]
µ (ψ) = −

∞∑

s=0

1

s!

∑

µ1,...,µs

∂µ,µ1,...,µsf(ψ)
[ s∏

j=1

hµj (ψ)
][k−1]

hence

(ω0 ·∂ψ)2h[k]
µ (ψ) = −

∞∑

s=0

1

s!

∑

µ1,...,µs
k1+...+ks=k−1

∂µ,µ1,...,µsf(ψ)
( s∏

j=1

h[kj ]
µj

(ψ)
)
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(ω0 ·∂ψ)2h[k]
µ (ψ) = −

∞∑

s=0

1

s!

∑

µ1,...,µs
k1+...+ks=k−1

∂µ,µ1,...,µsf(ψ)
( s∏

j=1

h[kj ]
µj

(ψ)
)

Use Fourier series F (ψ) =
∑
ν∈Z

ℓ eiψ·ν Fν and

((ω · ∂ψ)2F )ν = −(ω · ν)2Fν , (∂F )ν = iν Fν

(ω0 · ν)2h[k]
µ;ν =

∞∑

s=0

1

s!

∑

µ1,...,µs
ν0+ν1+...+νs=ν

k1+...+ks=k−1

iν0;µ(
s∏

j=1

iν0;µj )fν0

( s∏

j=1

h
[kj ]
µj ;νj

)

(ω0 · ν)2h[k]
µ;ν =

∞∑

s=0

1

s!

∑

ν0+ν1+...+νs=ν

k1+...+ks=k−1

iν0;µfν0

( s∏

j=1

iν0 · h
[kj ]
νj

)

Check (induction): if ν = 0 r.h.s. is 0 (Linstedt,NewcombPoincaré)
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h[k]
µ;ν =

1

(ω0 · ν)2

∞∑

s=0

1

s!

∑

ν0+ν1+...+νs=ν

k1+...+ks=k−1

iν0;µfν0

( s∏

j=1

iν0 · h
[kj ]
νj

)

r

µ ν

v
(k) =

∑

s>0
k1+...+km=k−1

1

s!

ν0

r

µ ν

v

ν1

νm

[ks]

[ks−1]

[k2]

[k1]

Diagrammatic interpretation. Each line λ with a “fat” origin bearing

a label [kλ] represents h
[kλ]
νv′ . Iterate.
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r

µ

ννλ0
v0

νv0

ν(v1v0)

ν(v1v5)

ν(v2v0)

v1

νv1

v2

v3

v5

v6

v7

v11

v10

v4

v8

v9

Each node v carries a momentum label νv; each line λ = (v′v) from v′

to v carries a current νλ ≡ ν(v′v) which equals the sum of all the
momentum labels of the nodes that precede v

νλ = ν(v′v) =
∑

w<v

νw =
∑

w≤v′

νw

Uniformize notations: imagine the root line end-point (which is not a
node) carries a momentum label ν0 = eµ = unit vector in direction µ.
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r

µ

νλ0 v0

νv0

ν(v1v0)

ν(v1v5)

ν(v2v0)

v1

νv1

v2

v3

v5

v6

v7

v11

v10

v4

v8

v9

define value of the tree θ

Val(θ) =
∏

nodes v

−fνv

sv!

∏

lines λ=(v′v)

νv · νv′

(ω · ν(v′v))2

The functions h
[k]
µ;ν are expressed as sums over all trees with k lines

(including the root line).
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r

µ

νλ0 v0

νv0

ν(v1v0)

ν(v1v5)

ν(v2v0)

v1

νv1

v2

v3

v5

v6

v7

v11

v10

v4

v8

v9

Trees imagined drawn on a plane and two trees are “equivalent” if can
be overlapped by continuously pivoting or deforming in length the
branches avoiding any overlapping of branches.

May be convenient to distinguish lines by appending an extra label,
number label from 1 to k. Equivalence will again be defined through
the overlapping of the branches through pivoting and length
deformations. The value of a numbered tree with k nodes will then be

Val(θ) =
1

k!

∏

nodes v

−fνv

∏

lines λ=(v′v)

νv · νv′

(ω0 · ν(v′v))2

The Lindstedt cancellation at ν = 0 is inductively obvious here
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Conclusion: calling ν
def
=

∑
v νv

h[k]
µ;ν =

1

k!

∑

all labels
k−trees θ, νr=eµ

( ∏

nodes v

(−fνv
)
)( ∏

lines λ=(v′v)

νv · νv′

(ω0 · ν(v′v))2

)

This is nowadays called Lindsted series: [6].

Original Lindstedt’s work can be found in Poincaré, [7, p.462]:
original result is more general. If ℓ = 2 motions are solved in powers µ
and of 4 parameters ω1, ω2 representing, in Poincaré’s notation, ε and
the first order variations of the new rotation vectors (they also depend
on two uninteresting arbitrary angles ω1, ω2). Series yield power series
for action and angles of perturbed motion as periodic functions of a
uniformly rotating pair of angles with new rotation vector λ1, λ2.
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Above we fix λ = (λ1, λ2) to 0 (i.e. fix the rotation vector to the
unperturbed one (and ω1, ω2 also to 0)). So quasi periodic solutions
are found in powers of ε, ω1, ω2 and in an open set around the original
invariant torus.

Which P. proves to be not convergent, in general, because it would
imply 0 Lyapunov exp. for the dense periodic orbits (or also existence
of ℓ “uniform”, independent, constants of motion).

However the special case λ = 0 is soluble by the KAM: as Weierstrass
seemed to conjecture, [8, p.9]
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The convergence problem

Suppose fν = f−ν and f a trigonometric polynomial: |ν| ≤ N <∞.

1) number of trees: Ak ≤ k!22k

2) |fν | ≤ F

3) Define scale of a line λ the integer n = 1, 0,−1,−2, . . .

n if 2n−1 < C|ω0 · νλ| ≤ 2n, and n ≤ 0

1 if C|ω0 · νλ| ≥ 1

4) Nn(k) max. number of lines of scale n in a k–lines tree θ

Val(θ) =
1

k!

∏

nodes v

−fνv

∏

lines λ=(v′v)

νv · νv′

(ω0 · ν(v′v))2

⇒ |h[k]
ν | ≤ C2kF kN2k22k

−∞∏

n=1

2−2nNn(k) δ(|ν ≤ kN)
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Hence need bound on Nn(k). Siegel-Bryuno? try:

Nn(k) ≤
2k

E2−n/τ
− 1 if Nn > 0 ?

for the number of lines of scale ≤ n (notice the ≤).

The heuristic argument says that 1
N 2−nτ lines are needed to build a

line of scale n: once build need the same for one more and so on
which would imply the bound as in the Siegel problem.

Let E = 1
N23/τ and proceed by induction over k since for k ≤ E2−n/τ

the bound certainly holds because need at least u = 1
N 2−n/τ lines to

build a line of scale n and E2−n/τ < 1
N 2−3/t2−n/τ < u so that

Nn(k) = 0.
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Nn(k) ≤
2k

E2−n/τ
− 1 if Nn > 0 ?

ok for k < E2−n/τ

If the root line has scale n and there is only one subtree θ with root
line of scale n in the path leading to the root r

either θ/θ contains k “lines” and k > 1
2E2−nτ then θ contains

k − k < k − 1
2E2−nτ then OK because

Nn(k) ≤ 1 +
2(k − k)

E2−ν/τ
− 1 <

2k

E2−ν/τ
− 1
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Or θ/θ contains “few lines” k ≤ 1
2E2−nτ . If the ν flowing into the root

of θ is different from the current ν ′ through the root line of θ it is

|ω0 · ν| ≥ −|ω · ν
′|+ |ω · (ν − ν′)| ≥ −

1

C
2n +

1

C
(N2E2−n/τ)τ

so that C|ω0 · ν| ≥ −2n + 2τ+32n > 2n and this case ie therefore
impossible.

Since the cases in which the root line does not have scale n are trivial
the only case that needs study is if the root momentum ν is equal to
the root momentum of the only subtree whose root has momentum ν

exactly.
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In this case the Nn can be much larger than wanted.

Remark: in Siegel’s case this does not arise because the analogue of
the momentum of λ is the number of endpoints of the tree reachable
climbing up from λ⇒ it is stricly increasing while descending the tree.

Introduce the notion of cluster T of scale nT in a tree θ as a maximal
connected set of lines of scale ≥ nT .

V (T ) nodes in T ,
Λ(T ) branches connecting them, “contained, or internal” to T ,
Λ1(T ) branches in Λ(T ) plus the single exiting one (if any),
T (θ) set of all clusters in θ.

Clusters form a hierarchical structure: a cluster can contain
subclusters and can be contained in larger clusters: the larger the
cluster the smaller its scale nT
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v1

v2

v3

v5

v6

v4

T

T ′

T ′′

v7

This is an example of a family of clusters T has lower (more negative)
scale of T ′ which has lower scale than T ′.

The example is special because each cluster has only one entering line.

A key notion is self energy cluster or resonant cluster.
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Self energy clusters: suppose that

1) T has just one entering branch λT and one exiting. Its scale
n = nλT is smaller than the smallest scale nT of the branches inside T

2) let w1 the node into which the branch λT ends inside T .

Then T is a self-energy subgraph if

(i)
∑

w∈T νw = 0: in and out lines carry same momentum.

(ii) If n = nλT , EEquiv2−3/τN−1 then M(T ) is not too large:

M(T )
def
= number of branches contained in T ≤

1

2
ε 2−n/τ

Call nλT the self-energy-scale of T , and λT a self-energy branch
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A notion of self energy cluster abridged s.e.c designed so that deleting
each self energy clusters and joining the entering and exiting lines a
graph without any s.e.c. is obtained. Hence

N ∗
n

def
= # scale-n lines not counting the ones exiting a s.e.c.

N ∗
n ≤

2k

E2n/τ

The s.e.c. do not allow a naive estimate of Siegel-Bryuno type because
if θ/θ contains “few lines” k ≤ 1

2E2−nτ it can still be that the ν

flowing into the root λ of θ equals the current ν′ through the root λ
line of θ and the two lines are the entering and exiting lines of a s.e.c.
In fact if λ, λ have equal scale but are not entering and exiting the
same cluster the difference ν − ν ′ cannot be 0.
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Because all lines outside θ have a scale > n (their momenta are sums
of ≤ k node momenta ⇒ their size is ≤ N 1

2E2−nτ ≤ (2−(1+3/τ)2−n/τ )

plus, maybe, a contribution ν from the current of λ: so the
propagators are ≥ 2τ+32n − 2n > 2n ⇒ have scale > n + 3.

If λ, λ are part of the same cluster which is not a s.e.c. then the
number of lines in this cluster must be large, by the definition of s.e.c.
(item (ii)), and the bound is again trivial.

Conclusion, collecting the lines not accounted (i.e one per s.e.c.)

Nn ≤ N
∗
n +

∑

T,nT =n

mT = N ∗
n +

∑

T,nT =n

(mT − 1) + p(n, k)

where mT is the number of s.e.c. of scale n in the scale-n cluster T
and p(n, k) is the maximum number of scale n clusters that can be in
a cluster of scale n.
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The number p(n, k) is bounded in the same way by 2k
E2n/τ − 1, i.e. by

the same bound that can be placed on N ∗
n , so that the final estimate is

Nn(k) ≤
4k

E2n/τ
+

∑

T,nT =n

(−1 + mT )

Cancellations: (fig5) 3k + 1 lines such that ω · νλ = O(k−τ )

ν1

ν2

νk

νk+1

v2k

ν

v2k−2

ν

v2

ν

v0 νλνλ νλ

−ν
v2k−1

−ν
v3

−ν
v1

Val(θ) =
1

k!

∏

nodes v

(−fνv)

∏

lines λ=(v′v)

νv · νv′

(ω0 · ν(v′v))2

after sum over labels is bounded by N3k+1F 3kN6k(Nk)τk = O(k!τ ).
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This shows the need of cancellations. Cancellations must be relates to
s.e.c because values of trees without s.e.c. are bounded by

(2N + 1)kF kN2k
( ∏

n≤0

2−2n 2n/τ 2/E)k

To treat the values of the trees θ with s.e.c. consider first a tree that
contains only one s.e.c. R of scale n and entering line
λR = (vR, v1), (vR 6∈ R, v1 ∈ R) and inner scale nR.

It is nR > n + 2 as the propagators ∆λ of the lines λ ⊂ R have a
|νλ| ≤ NE2−n/τ = 2(−3−n)τ so that |∆λ| ≥ 23+n − 2n > 22+n).

Collect all trees obtained from θ detaching the incoming line λT and
attaching it successively to the inner nodes vi of the cluster T and
add to the collection the trees obtained by reversing simoultaneously
the sign of all nodes momenta νvi , vi ∈ R.
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The value of the trees so obtained changes because

1) the factor νvi · νvT

2) the current on λ ⊂ R may change because it is
νλ =

∑
w∈R νw + ηiνλR with ηi = 0 if λ is not on the path of the

s.e.c. and 1 otherwise

In this process the scale of the inner lines may change: the cluster R
remains a s.e.c. cluster (but the clusters inside R may change).

If η = ω0 · νλR the sum of the values of the considered trees θi is
obtained by considering the tree θ0 in which the s.e.c. is deleted and
its entering and exiting lines are connected into a single line λ and
multiplying Val(θ0) by a function 1

η2 Fn,R(η)

If the inner lines of θ do not change scale in all θi’s no matter which
value of η with |η| ≤ 2−n (even if complex) the function Fn,R(η) is
uniformly bounded via the Siegel-Bryuno bound.
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|Fn,R(η)| ≤ (2N + 1)MFMN2k
( ∏

0≥p≥nR

2−2p 2p/τ 2/E)M = BM

where M is the number of lines in R and η is complex |η| ≤ 2n.

Need to understand: what about possible scale change in a s.e.c. ?

Key remark: inside a s.e.c. few lines ≤ k = 1
2E2−n/τ .

Their scale is > n + 3: their momenta are sums of ≤ k node momenta
⇒ size is ≤ Nk ≤ (2−(1+3/τ)2−n/τ ) plus, maybe, a contribution ν
from the current of λR.

So the propagators are ≥ 2τ+32n − 2n > 2n+3 ⇒ scale > n + 3.
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Isolate the tree θR inside the s.e.c. (delete outside lines and the
incoming line).

Let νR
λ be the momentum of λ ∈ θR: |νλ| ≤ 2−(3+n)/τ : then the true

momentum will be either νR
λ or νR

λ + ν.

If for all |ν0| ≤ 2−(3+n)/τ , and n ≤ 0 it is

max
0≥p≥n

|Cω0 · ν0 − 2p| > 2n+1, ∀|ν0| ≤ 2−(3+n)/τ

then the scale of νR
λ and of νR

λ + ν are the same and no line can
change scale if the node vi ∈ R of λR = (vivR) is shifted to any vj ∈ R

Question: can the above strong Diophantine property be imposed?

The set of ω0 satisfying has full measure in R
ℓ
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Proof ∀ν take out of the ball of radius ρ a layer λν of width 1
C|ν|τ+1

around the plane ω0 · ν = 0 so that, for ω out of it, C|ω · ν| > 1
|ν|τ

The total volume extracted from the ball will be µℓ

∑
ν 6=0

1
C|ν|τ+1 .

1
C|ν|τ

2p

C|ν|
, |ν|<2(3−n)/τ

Furthermore for each ν with |ν| < 2−(n−3)/τ and each p ∈ [n, 0]

extract a layer of width 2n+1

C|ν| out of the planes orthogonal to ν at

distances 2p

C|ν| from the plane ω0 · ν = 0; this takes out a further

≤ µ′
ℓ

−∞∑

n=0

2n+1ρℓ−1(|n|+ 1)
∑

|ν|≤2−(n−3)/τ

1

|ν|

≤ µ′′
ℓ

1

C
(|n|+ 1)2n−(ℓ−1) n

τ ≤ µ′′′
ℓ

1

C

Hence (as τ > ℓ− 1) C <∞ out a zero volume set (Borel-Cantelli)
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Going back to the bound of the sum of the values of trees with only
one s.e.c. on a line of scale n and momentum νR

∗∑ 1

k!

∏

nodes v

−fνv

∏

lines λ=(v′v)

νv · νv′

(ω0 · ν(v′v))2

it is for η = ωω · νR

≤ C2kF kN2k22k
−∞∏

n=1

2−2nNn(k) 1

η2
Fn,R(η)

Since the inner lines of θ do not change scale in all θi’s no matter
which value of η with |η| ≤ 2−n (even if complex) the function
Fn,R(η) is uniformly bounded via the Siegel-Bryuno bound.

|Fn,R(η)| ≤ (2N + 1)MFMN2k
( ∏

0≥p≥nR

2−2p 2p/τ 2/E)M = BM
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If there were more than one s.e.c. with no internal s.e.c. the same
bound would be

≤ C2kF kN2k22k
−∞∏

n=1

2−2nN∗
n(k)

∏

R

1

(ηR)2
Fn,R(ηR)

and |Fn,R(ηR)| ≤ BMR
0 ≤ Bk

0Bk
∏

R
1

(ηR)2

with Fn,R(ηR) holomorphic in ηR for |ηR| ≤ 2nR (actually for
|ηR| ≤ 2nR+1).
So if F (η) can be shown to vanish to second order in η the bound can
be improved to

≤ C2kF kN2k22k
−∞∏

n=1

2−2nN∗
n(k)

∏

R

BMR
0

1

22n
(22(n−nR))

the sum
∑

R MR ≤ k and the Siegel-Bryuno bound yields

≤ Bk
0C2kF kN2k22k

−∞∏

n=1

2−2nN∗
n(k)

∏

R

1

22n
(22(n−nR))
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The function FR,n has a second order 0 in η as it can be seen by
remarking that the entering line modifies the propagators when
shifted from one inner node to another: hence it does not change if η
is set = 0 the value of F .

If the s.e.c. contains a s0
vi

lines inner to the cluster R than The value
of F contains a combinatorial factor 1

s0
vi

! times 1
s0

vi
+1 due to the node

vi to which the line λR is attached.

Therefore we can say that if the line λR is attached to vi besides
changing the propagators will contribute a factor

νR · νi

s0
vi

+ 1
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However the line can be attached in s0
vi

+ 1 ways to vi.

Thus if different ways are identified we can say that the line attached
to vi gives a factor νR · νi to the value of the graph (neglecting the η
changes of the propagators).

Hence if η = 0 summing over i changes the value of the graph by
νR ·

∑
i νi = 0 because the sum of the node momenta of nodes

internal to R is 0 in every s.e.c.
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The zero is of order η2 as FR,n(η) is even in η (by the sum over the
s.e.c in which all internal node momenta were changed in sign).

Also the s.e.c. internal to larger ones can be treated in the same way:
the line λR entering a s.e.c. is moved an reattached to the nodes
internal to the cluster producing the cancelation for the same reason.

To avoid “over-canceling” attention is paid to avoid reattaching the
entering line to nodes that are internal to s.e.c. R′ ⊂ R. Which is fine
because the sum of the node momenta of v ∈ R/R′ already vanishes.

Paris UnivMlV & IHP 8-19 June 2010



After collecting the families of graphs associated with the s.e.c. and
resumming their values the bound becomes

≤ Bk
0Bk

∏

R

1

(ηR)2

where the product is over all s.e.c.

≤ Bk
0C2kF kN2k22k

−∞∏

n=1

2−2n 4k
E 2n/τ ∏

T

2−2n(mT−1)
∏

R

(22(n−nR))

The product of the last two is ≤ 1 and the total contribution of order

k is bounded by B
k

(with B computable).

Paris UnivMlV & IHP 8-19 June 2010



The Siegel-Bryuno lemma in the version of [1] was extended to cover
the KAM case in [6]. A stronger bound was derived in [9] who showed

For graphs with no s.e.c., then there is a constant C such that:

∏

λ∈θ

1

|ω · νλ|
≤ Ck

∏
v∈θ |νv|3τ

(
∑

v∈θ |νv|)τ

for a proof see [10, Eq.(5.2)].

The method of Eliasson is quite different from the one here (based on
[6]): a careful and detailed comparison can be found in [11].

Differentiable KAM: f ∈ C(p), p > 2τ + 4 (Moser).

If ‖ν‖
def
= (

∑
|νi|

2)
1
2 , fν =

Pj(ν)
||ν||ℓ+p+i with Pj a harmonic polynomial of

degree j (and combinations thereof) tree method OK if ℓ > 3 + 6τ :
with the extra result of analyticity in ε, [10]. This is so because the
Lindstedt series is well defined in spite of the non analyticity of f .
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Classic KAM (∼ Arnold’s version)

Hamiltonian: H0 = h0(A) + f0(A,α).

holomorphic in Wρ0,ξ0(A0)
def
= Cρ0(A0)×Ax0

Cρ0 = polydisk ⊂ C
ℓ centered at A0 ∈ R

ℓ: |Aj −A0j | ≤ ρ0

Aξ0 = polyannulus ⊂ C
ℓ around unit circle: e−ξ0 ≤ zj ≤ eξ0 , ξ0 ≤ 1,

Aξ0 ≡ {|Im αj | ≤ ξ0}.

Notation zj ≡ eiαj , ∂αj ≡ izj∂zj , ω0(A) ≡ ∂Ah0(A).

E0
def
= max

Wρ0,ξ0
(A0)
|∂Ah0(A)| ≡ max

Wρ0,ξ0
(A0)
|ω(A)|

def
= ||h0||ρ0

η0
def
= max

Wρ0,ξ0
(A0)
|(∂2

A
h(A))−1|

ε0
def
= max

Wρ0,ξ0
(A0)

(
|∂Af0(A,α)|+

1

ρ0
|∂αf0(A,α)|

) def
= ||f0||ρ0,ξ0
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Suppose ∀0 6= ν ∈ Z
ℓ exist C0, τ > 0 s..t.

|ω0 · ν| ≥
1

C0|ν|τ
, ω0

def
= ω0(A0)

∃ Γ, a, b, c > 0 s.t. ∃ H,h analytic in ψ ∈ T
ℓ and in f0 s.t.

A(ψ) = A0 + H(ψ), α(ψ) = ψ + h(ψ)

are parametric eq. of an invariant torus run quasi periodically with
spectrum ω0 = ω0(A0): i.e

A(t) = A(ψ + ωot), α(t) = α(ψ + ω0t)

IF

ε0

E0
≤ (E0C0)

−a(η0E0ρ
−1
0 )−bξc

0 Γ
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Notice generality: only smallness of ε0

E0
, expressed via few large

dimensionless parameters E0C0 ≥ 1, η0E0ρ
−1
0 ≥ 1, ξ−1

0 ≥ 1

f0(A,α) =
∑

ν∈Z
ℓ

eiα·νf0,ν(A),

|∂Af0,ν(A)|ρ0 ≤ ||f0||ρ0,ξ0e
−ξ0|ν|, |iνf0,ν(A)| ≤ ρ0||f0||ρ0,ξ0e

−ξ0|ν|

by the maximum principle. Therefore f
[>N0]
0

def
=

∑
|ν|>N0

eiν·αfν(A)

||f
[>N0]
0 ||ρ0,ξ0−δ0 ≤

∑

|ν|>N0

e−δ0|ν|
(
ρ−1
0 |ν| |f0,ν(A)|+ |∂Afν(A)|

)

≤ γ0ε0δ
−ℓ
0 e−

1
2 δ0N0 = γ0ε

2
0C0

if N0 = 2
δ0

log (C0ε0δ
l
0)

−1: dimensional or analyticity loss estimate.
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Integrate the Hamilton Jacobi equation to “O(ε2
0)”, setting aside

f
[≥N0]
0 in f0 = f

[<N0]
0 + f

[≥N0]
0 :

h0(A
′ + ∂αΦ0(A

′,α)) + f
[<N0]
0 (A′ + ∂αΦ0(A

′,α),α) = α− indep.

The function Φ0 is easily determined by solving

ω(A′) · ∂αΦ(A′,α) + f
[<N0]
0 (A′,α) = f(A′) in W (ρ̃0, ξ0 − δ0),

δ0 to be fixed:

ρ̃0

ρ0

Φ0(A
′,α) = −

∑

0<|ν|<N0

f0,ν(A
′)

iω(A′) · ν
eiα·ν

provided A is close to A0. This is implied by ρ̃0 small.
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Choose ρ̃0 so that ω(A′) · ν| ≥ 1
2C0|ν|τ

for all |ν| < N0:

|ω(A′) · ν| = |ω0 · ν|
∣∣1− |(ω(A′)− ω(A0)) · ν

ω(A0) · ν

∣∣ ≥ 1

2C0|ν|τ

⇒ ρ̃0 = ρ0
1

4E0C0Nτ+1
0

(no loss as E0C0 ≥ 1, and N0 > 2 can be)

because

|(ω(A′)−ω(A0))·ν
ω(A0)·ν| ≤ |A′ −A0|max |∂2h(A′′)| ≤

E0C0Nℓ+1
0 eρ0

ρ0−eρ0
≤ 1

2

Then Φ0 (dimensionless) is of order O(ε0) in the precise sense

||Φ0||eρ0,ξ0−δ0
≤ γ1 E0C0N

ℓ+1
0 δ

−(ℓ+τ)
0 ε0C0

(derived from he bound on ∂αf0,ν ≤ ε0ρ0e
−ξ0|ν|)

Paris UnivMlV & IHP 8-19 June 2010



Motion in W̃ (ρ̃0, ξ − δ0) better described in canonical coordinates
(A′,α′):

A = A′ + ∂αΦ0(A
′,α), α′ = α+ ∂A′Φ(A′,α)

To find A = A′ + Ξ(A′,α′) and α = α′ + ∆(A′,α′) solve the implict
functions with equal Jacobians ∂A′∂αΦ0(A

′,α′) that can be bounded
in W (1

2 ρ̃0, ξ0 − 2δ0) (because ‖Φ0‖ is bdd in W (ρ̃0, ξ0 − δ0)).

Again by a dimensional bound (Cauchy’s estimate), it is for instance

max |∂α∂ A′Φ0| 1
2 eρ0,ξ0−2δ0

≤ γ′||Φ||eρ0,ξ0−δ0

1

δℓ
0

(here 1
2 ρ̃0 could be ρ̃0 ! and other better bounds possible too). So

provided

γ2E0C0N
ℓ+1
0 δ

−(ℓ+τ+ℓ)
0 ε0C0 < 1

Ξ(A′,α′) ≡ ∂αΦ0(A
′,α) and ∆(A′,α′) ≡ ∂A′Φ0(A

′,α) defined
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max
W ( 1

2 eρ0,ξ0−2δ0)
|Ξ| ≤ ρ̃0||Φ||eρ0,ξ0−δ0

, max
W ( 1

2 eρ0,ξ0−2δ0)
|∆| ≤ ||Φ||eρ0,ξ0−δ0

Therefore if (A′,α′) ∈ W (1
4 ρ̃0, ξ0 − 3δ0) the corresponding points

(A,α) are in W (1
2 ρ̃0, ξ0 − 2δ0) provided

ρ̃0||Φ||eρ0,ξ0−δ0
≤

1

4
ρ̃0, ||Φ||eρ0,ξ0−δ0

< δ0

which, from ||Φ||eρ0,ξ0−δ0
≤ γ1E0C0N

ℓ+1
0 δ

−(ℓ+τ)
0 ε0C0, is implied by

γ3E0C0N
ℓ+1
0 δ

−(2ℓ+τ)
0 ε0C0 < 1

if γ3 is large enough. The last condition implies all the earlier ones.
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Hence motions starting in the (much) smaller W (1
4 ρ̃0, ξ0 − 3δ0) can be

described in the (A′,α′) coordinates (as long as they remain in W )
by the Hamiltonian

h0(A
′ + Ξ(A′,α′)) + f0(A

′ + Ξ(A′,α′),α′ + ∆(A′,α′))

under the (above) condition

γ3E0C0N
ℓ+1
0 δ

−(ℓ+τ+1)
0 ε0C0 < 1

It is natural to write h1(A
′) + f1(A

′,α′) with

h1(A
′)

def
= h0(A

′) + f0(A
′)

However ω(A′)
def
= ∂A′h1(A

′) evaluated at A0 is no longer ω0.
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Look for A1 s. t. ∂A1h1(A1) = ω0

and for ρ1 = eρ0

8 < ρ0

2

ρ̃0 = ρ0

(E0C0Nℓ+1
0 δ

−(ℓ+τ)
0 )

A0

A1

ρ1

eρ0

4

The equation for A1 = A0 + a is ω0(A1) + ∂A1f0(A1) = ω0

a+(∂2
Ah0(A0))

−1[∂Ah0(A0+a)−ω0−∂
2
Ah0(A0)a]+∂Af0(A0+a) = 0

a + n(a) = 0

max |n(a)| ≤ γ4η0(E0
|a|2

ρ2
0

+ ε0), max |∂an(a)| ≤ γ4η0(E0
ρ̃2
0

ρ2
0

+ ε0)
1

ρ0
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max |n(a)| ≤ γ4η0(E0
ρ̃2
0

ρ2
0

+ ε0), γ4 max |∂an(a)| ≤ η0(E0
|a|2

ρ2
0

+ ε0)
1

ρ0

Hence |a| < ε0η0 if γ4
E0

ρ2
0
η2
0ε

2
0 < ε0 ⇐ γ4 (η0E0ρ

−1
0 )(η0ε0ρ

−1
0 ) < 1

provided Jacobian |∂an(a)| < 1: same condition if γ4 large enough

γ4 (η0E0ρ
−1
0 )(η0ε0ρ

−1
0 ) < 1.

Under earlier condition (γ3E0C0N
ℓ+1
0 δ

−(ℓ+τ+1)
0 ε0C0 < 1) we also need

ε0η0 < 1
8 ρ̃0. All of them are implied by

γ5
ε0

E0
(E0η0ρ

−1
0 )(E0C0)

2N ℓ+1
0 δ

−(ℓ+τ+1)
0 < 1
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Let ρ1
def
= 1

8 ρ̃0, ξ1 = ξ0 − 4δ0, H1 = h1(A
′) + f1(a

′,α′) in W (ρ1, ξ1)

At A1 it is ∂A′h1(A1) ≡ ω0 and f1 is

f1(A
′,α′) =

[
h0(A

′ + Ξ(A′,α′))− h0(A
′)− ω(A′) · Ξ(A′,α′)

]

+
{
ω(A′) · Ξ(A′,α′) + f [<N0](A′,α′ + ∆(A′,α′))− f0(A

′)
}

+
[
f [<N0](A′ + Ξ(A′,α′),α′ + ∆(A′,α′))

− f [<N0](A′,α′ + ∆(A′,α′))
]
+ f [≥N0](A′ + Ξ(A′,α′))

the “red” term is 0 by definition of Φ0, Ξ,∆:

Ξ(A′,α′) ≡ ∂α′Φ0(a
′,α), ∆(A′,α′) ≡ ∂A′Φ0(a

′,α)

with Φ0 solution of HJ:

ω0 · ∂αΦ0(A
′,α) + f

[<N0]
0 (A′,α)− f0(A

′) = 0
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To iterate it is necessary to estimate the sizes E1, ε1 of f1, E1

Dimensional estimates possible because ρ1 = 1
8 ρ̃0, ξ1 = ξ0 − 3δ0 − δ0

are smaller than the domains of definition of f1, h1

E1
def
= max

W (ρ1,ξ1)
|∂A′h1(A

′)| ≤ E0 + ε0

Call f I , f II , f III the terms remaining in f1. Then

ρ̃0 = ρ0
1

E0C0N
ℓ+1
0

, ρ1 =
1

8
ρ̃0

||Φ||eρ0,ξ0−δ0
≤ 2E0C0N

ℓ+1
0 δ

−(ℓ+τ)
0 ε0C0

⇒ ||f I ||ρ1,ξ1

≤ γ5
1

ρ1
[
E0

ρ0
(ρ̃0||Φ0‖)

2δ−1
0 ] ≤ γ5ε0

ε0

E0
(E0C0)

4N
2(ℓ+1)
0 δ

−2(ℓ+τ)
0
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Likewise ||f II ||ρ1,ξ1 ≤ γ5
ε0

δℓ
0
γ1(E0C0)N

ℓ+1
0 δ

−(ℓ+τ+1)
0 , and

||f III ||ρ1,ξ1 ≤
ε2
0

E0

Conclusion: if N0 = 2δ−1
0 log(ε0C0δ

−ℓ−1
0 )−1

H1 = h1 + f1, analytic in Wρ1,ξ1

E1 = E0 + ε0

ε1 = γ6ε0
ε0

E0
(E0C0)

4N
2(ℓ+1)
0 δ

−2(ℓ+τ)
0

η1 = η0(1 + γ6

√
ε0

E0
(η0E0ρ

−1
0 )(E0C0)

2N ℓ+1
0 )

ξ1 = ξ0 − 4δ0, ρ1 =
1

8
ρ0

1

δ−1
0 log(ε0C0δ

−(ℓ+1)
0 )

provided

γ7
ε0

E0
(E0η0ρ

−1
0 )(E0C0)

2N ℓ+1
0 δ

−(ℓ+τ+1)
0 < 1

To iterate choose δk = ξ0(16(1 + k2))−1 ⇒ ξ0

2 > ξ0 −
∑

k δk
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Simplify by imposing
√

εk

Ek
(EkC0)

4N
2(ℓ+1)
k δ

−2(ℓ+τ)
k < 1

Ek+1 = Ek + εk, εk+1 = εk

√
εk

Ek

Hence (suppose for simpl. ε0

E0
< 1

2 )

εk

Ek
≤ (

ε0

E0
)(3k/2)k

, Ek ≤ E0

∞∏

k=0

(1 + (
ε0

E0
)(3k/2)k

) < 2E0

if γ8

√
εk

Ek
(Ekηkρ−1

k )(EkC0)
4N

2(ℓ+1)
k δ

−2(ℓ+τ+1)
k < 1

Therefore

ρk+1 ≥
γ9 ρk

(1 + k2)(−ξ−2
0 + log(16(1 + k2))− log(2E0C0)− (3

2 )k log ε0

E0
)

≥ γ10
ξ2
0

− log ε0

E0

(
2

3
)2kρk ≥ (γ10

ξ2
0

− log ε0

E0

)k(
2

3
)2k2

ρ0
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Therefore if

γ10
4

√
εk

Ek
(EkC0)

4N
2(ℓ+1)
k δ

−2(ℓ+τ)
k < 1

ηk ≤ η0

∏

k

4

√
εk

Ek
≤ 2η0

Hence

Ek ≤ 2E0, ηk ≤ 2η0, εk ≤ ε0

( ε0

E0

)( 3
2 )k

ξk >
ξ0

2
, ρk ≥ ρ0

( ξ2
0

− log ε0

E0

)k
(
2

3
)k2

if

γ11
4

√
εk

Ek
(Ekηkρ−1

k )(EkC0)
4N

2(ℓ+1)
k δ

−2(ℓ+τ+1)
k < 1
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The condition

γ11
4

√
εk

Ek
(Ekηkρ−1

k )(EkC0)
4N

2(ℓ+1)
k δ

−2(ℓ+τ+1)
k < 1

can fail to be satisfied only for finitely many values of k if
εk, Ek, ηk, ρk, ξk are as

Ek ≤ 2E0, ηk ≤ 2η0, εk ≤ ε0

( ε0

E0

)( 3
2 )k

ξk >
ξ0

2
, ρk ≥ ρ0

( ξ2
0

− log ε0

E0

)k
(
2

3
)k2

Hence given E0, ρ0, ξ0 ε0 will be imposed to be so small that the
condition also holds for k ≤ k0 ⇒ the condition is simply

∃ Γ, a, b, c > 0, Γ (
ε0

E0
)(E0C0)

a(η0E0ρ
−1
0 )bξ−c

0 < 1

is the only condition for the indefinite iteration of the construction.
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The successive cannical maps C0, C1, . . . , Ck−1 map Wρk,ξk
into Wρ0,ξ0

and the composition C0 ◦ · · · ◦ Ck−1 and Ck is close within ||Φk|| to the
identity, i.e. within ρk||Φk|| in the actions ||Φk|| in the angles and

||Φk|| = O(
(

ε0

E0

)(3/2)k

). .

Let initial data (Ak,α′
0) ∈Wρk,ξk

then their motion is up to an error

||fk||t ∼ O(ε
(3/2)k

0 ) given by

A′ = Ak,α′ = α′
0 + ω0t

therefore fixed t, for k large, the point moves within Wρk ,ξk
where the

canonical map C0 ◦ · ◦ Ck−1−−−→k→∞
C is defined.

The limit map is defined only for A∞ × T
ℓ ≡W0,ξ0/2 which in the

original variable is a torus of dimension ℓ and motion on it is quasi
periodic with spectrum ω0.
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Resummation techniques and renormalized series

Transformations of (possibly divergent) power series in ε into
convergent series of functions that depend in a nontrivial way on ε.

Example: tori for H(A,α) =
1

2
A2 + εf(α)

KAM results are analytic in ε and no resummation is needed.
However they provide an interesting arena to explain techniques (e.g.
like the perturbation series for resonant quasi periodic motions).

Solution “approximated to order k”

h(≤k)(ψ, ε) =
∑

ν∈Z
ℓ

eiν·ψh(≤k)
ν (ε), h(≤k)

ν (ε) =

k∑

k′=1

εk′

h(k′)
ν ,

where h
(k)
0

= 0 and h
(k)
ν are the Lindstedt series coefficients in tree

representation.
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r

µ

ννλ0
v0

νv0

ν(v1v0)

ν(v1v5)

ν(v2v0)

v1

νv1

v2

v3

v5

v6

v7

v11

v10

v4

v8

v9

Each node v carries a momentum label νv; each line λ = (v′v) from v′

to v carries a current νλ ≡ ν(v′v) =
∑

w<v νw =
∑

w≤v′ νw

Val(θ) =
∏

nodes v

−fνv

sv!

∏

lines λ=(v′v)

νv · νv′

(ω · ν(v′v))2
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The functions h
[k]
ν are expressed as sums over all trees with k lines

A line factor is regarded as νvG(ω0 · νλ)νv′ where Gλ(x) is a

matrix Gλ(x)i,i′ =
δi,i′

x2 , “propagator”.

The propagator has (trivially) the properties GT (−x) = G∗(x) = G(x)

Scales and clusters: as in the theory of the Lindstedt series

If T is a self-energy cluster in a tree θ, V (T ) is the set of nodes in T ,
Λ(T ) the set of lines in T , kT is the number of nodes in T (ie
kT = |V (T )|), and λ1

T and λ2
T the lines exiting and entering T .

θ be a tree θ ∈ Θk,ν , of order k and momentum ν, with a s.e.c T .
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Let θ be a tree θ ∈ Θk,ν,j , of order k and momentum ν, with a s.e.c T .

Let θ0 = θ \ T the nodes and branches of θ outside T (of course θ0 is
not a tree), we define V (θ0) = V (θ) \ V (T ) and Λ(θ0) = Λ(θ) \ Λ(T ).

Consider all trees s.t. θ0 outside the s.e.c. is the same, while the s.e.c.
itself can be arbitrary, i.e. T can be replaced by any other s.e.c. T ′.

Define, as a formal power series the matrix,

M(ω0 · ν; ε) =
∑

θ=θ0∪T ′

VT ′(ω0 · ν), where

VT (ω0 · ν)
def
= εkT

( ∏

v∈V (T )

Fv

)( ∏

λ∈Λ(T )

Gλ

)
,

Fv are tensors of nodes v: Fv = 1
sv !fνv

νv,jv

∏sv

i=1 νvi,ji ; sum is over θ
s.t. θ \T fixed to θ0 and νv, v ∈ V (T ) satisfy conditions defining s.e.c.
Tensor labels and corresponding propagartors labels are contracted,
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Algebraic identity of formal power series (propagators symmetries)

(1) (M(x; ε))
T

= M(−x; ε), and
(2) (M(x; ε))

∗
= M(x; ε);

Check: Consider a graph computed with propagators verifying the
properties (1),(2), trivially valid in our case.

Given a s.e.c. T with momentum ν on entering branch λ2
T , call P the

path connecting the exiting branch λ1
T to the entering branch λ2

T .

Consider the s.e.c. T ′ obtained by taking λ1
T as entering branch and

λ2
T as exiting branch and by taking −ν as momentum flowing through

the (new) entering branch λ1
T .

⇒ arrows of branches along P change orientation, while subtrees
(internal to T ) rooted in P are unchanged.
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Momenta of branches in P change sign, while the others do not.

All propagators Gλ of branches λ ∈ P are transformed into GT
λ , hence

the ij entry of M(ω0 · ν; ε) equals the entry ji of M(−ω0 · ν; ε) ⇒
property (1).

Given a self-energy graph T , consider also the self-energy graph T ′

obtained by reversing the sign of the mode labels of the nodes
v ∈ V (T ), and by swapping the entering branch with the exiting one.

Again arrows of branches along P are reversed, while all the subtrees
(internal to T ) rooted in P are unchanged.

The complex conjugate of VT ′(ω0 · ν) equals VT (ω0 · ν), by using the
form of the node factors, and the fact that one has f∗

ν = f−ν (as f(α)
is real) and G†(ω0 · ν) = G(ω0 · ν) ⇒ property (2).
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The symmetries have been obtained without using the exact form of
the naked propagator: only exploiting that it enjoys properties
(1),(2). Thus it has more general validity.

The function M(ω0 · ν; ε) depends on ε but, by construction, it is
independent of θ0: hence we can rewrite as

M(ω0 · ν; ε) =
∑

T ′

VT ′(ω0 · ν),

where the sum is over all self-egnergy graphs of order k ≥ 1 with
external branches with momentum ν.

By definition of s.e.c., if 2n−1 < C|ω0 · ν| ≤ 2n, the sum is restricted
to s.e.c. T ′ on scale nT ′ ≥ n + 3.
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In other words: for λ ∈ T define n0
λ s.t., if ν0

λ would flow on the line λ
after setting to ν = 0 the entering line momentum it is

2n0
λ−1 ≤ C

∣∣ω · ν0
λ

∣∣ < 2n0
λ ,

then, for all branches λ ∈ Λ(θ) one has nλ = n0
λ because, for the same

reasons discussed in the theory of the Lindstedt series (i.e. shifting
the branches external to the s.e.c. of a θ, scale labels nλ of all lines
λ ∈ Λ(θ) do not change).

Denote ΘR
k,ν trees of order k without s.e.c. and root current ν:

renormalized trees.

Dressed propagators will be the matrices (d ≥ 1)

G
[0]

λ = (ω0 · νλ)
−2

, G
[d]

λ =
[
(ω0 · νλ)

2 −M [d](ω0 · νλ; ε)
]−1

,

defined recursively
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{M [d](ω0 · ν; ε)}d∈N is sum of the values of all renormalized s.e.c that
can be inserted on a line of momentum ν computed via the

propagators G
[d−1]

λ , i.e. as (set M [0](ω0 · ν; ε) ≡ 0)

M [d](ω0 · ν; ε) =
∑

renormalizedT

V
[d]
T (ω0 · ν),

V
[d]
T (ω0 · ν) = εkT

( ∏

v∈V (T )

Fv

)( ∏

λ∈Λ(T )

G
[d−1]

λ

)
;

By construction evaluating renormalized trees with the propagators

G
[d−1]

λ and summing, the sum h
[d]
ν (ε) of the values of all s.e.c.

containing only 0 ≤ p < d s.e.c. is reconstructed.

Hence the power series defining the functions h
[d]
ν (ε), truncated at

order k < d, coincide with the functions h
(≤k)
ν (ε) obtained by

truncating to order k the (formal) series for hν(ε).

By induction G
[d]

(x; ε)T = G
[d]

(−x; ε).
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If G
[d]

(x; ε) ≤ B
x2 it follows from the Siegel-Bryuno estimates that the

series defining h
[d]
ν is uniformly convergent for |ε| small.

The analysis of the cancellations can be reinterpreted to yield

Lemma: (Symmetry and cancellations properties)
(1) M [d](ω0 · ν; ε) satisfy M [d](x; ε)T = M [d](−x; ε).

(2) M [−q](x; ε) is restriction to x = ω0 · ν with ν of scale ≤ q of a
function analytic in |x| ≤ 2q if ε is small enough, and satisfies

∥∥∥M [d](x; ε)
∥∥∥ ≤ Dx2|ε|2,

for all d ∈ N and for a d–independent constant D.

(3) Hence G
[d]

λ verify |G
[d]

(x; ε)| ≤ B
x2 , ∀d ≥ 1.

(4) |M [d+1](x; ε)−M [d](x; ε)| ≤ B̂1 (B̂2)
d ε2d x2, for 0 < B̂1, B̂2 <∞,

|ε| < ε0 small enough.
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Hence ∃ M [∞](x; ε)
def
= limd→∞ M [d](x; ε) and the fully dressed

propagators

G[∞](x; ε)(x2 −M [∞](x; ε))−1

If h
[∞]

(ψ, ε) is the sum of the renormalized trees evaluated with the
fully renormalized propagators, then order by order in ε

h
[∞]

(ψ, ε) ≡ lim
d→∞

h[d](ψ; ε) = h(ψ; ε)

where h(ψ; ε) is the formal Lindstedt power series. The function

h
[∞]

(ψ, ε) solves, therefore, the equations of motion.
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Resonances and low dimensional tori

H(A,α) = ω0 ·A +
1

2
A ·A +

1

2
B ·B + εf(α,β),

(α,A) ∈ T
r ×R

r and (β,B) ∈ T
s ×R

s conjugated variables, ω0 in R
r

satisfies C|ω0 · ν| > |ν|−τ , ∀ν ∈ Z
r \ {0}, C > 0, τ ≥ r − 1

Resonant motion = quasi periodic motion with r < ℓ frequencies

Example α(t) = α0 + ω0t, β(t) = β0 for ε = 0.

For ε 6= 0

α(t) = ψ(t) + a(ψ(t),β0; ε),

β(t) = β0 + b(ψ(t),β0; ε),
ψ(t) = ψ0 + ω0t

Necessary: β0 s.t. ∂βf(β0) = 0

f(β)
def
= 1

(2π)r

∫
f(α,β)drα.

Paris UnivMlV & IHP 8-19 June 2010



Consider α̈ = −∂αf(α,β), β̈ = −∂βf(α,β) and |ω0 · ν| >
1

C|ν|τ and

β0 such that

∂βf0(β0) = 0, ∂2
βf0(β0) is negative definite.

∃ and, ∀ε ∈ (0, ε0),

α(t) = ψ(t) + a(ψ(t),β0; ε),

β(t) = β0 + b(ψ(t),β0; ε),
ψ(t) = ψ0 + ω0t

two functions a(ψ,β0; ε) and b(ψ,β0; ε), real analytic in ψ ∈ T
r,

such that is a solution with ψ̇ = ω0. Moreover a(ψ,β0; ε) and
b(ψ,β0; ε) are analytic in ε for ε ∈ (0, ε0) and divisible by ε.

The functions a,b exist and are abalytic in a comlex domain which
touches the negative ε axis on a “Cantor set” with ε = 0 as a density
point: at its points a,b are real and give a solution.

The solutions are called hyperbolic (ε > 0) and elliptic (ε < 0)
resonances.
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complex
ε−plane

The technique is based on the resummations method just described.

However there is no proof, so far, that the functions a,b are not
analytic at the origin!
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Hyperbolic resonances

. . . . . .

Representation of phase space in terms of ℓ rotators.

Existence of a formal solution as a power series in ε:

(a,b) = h =
∞∑

k=1

εkh(k)

No convergence in general (?): however

Idea: “There are no divergent series”. Hence look for sum rules

Split h(k) as a sum of many terms and recombine them to obtain an
absolutely convergent series.
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In doing this we shall be forced to sum divergent series by giving their
sum by a prescription. A typical exemple

∞∑

k=0

zk =
1

1− z
, z 6= 1

even when |z| > 1 !.

Not “harmless”: for instance it means that we are going to use:

∞∑

k=0

2k = 1 + 2 + 4 + 8 + 16 + . . . = −1 !!

Repeating the algorithm for the nonresonant quasi periodic motions a
graphical representation for the functions a,b is easily found.

Equations of motion are

(ω0 · ∂ψ)2h(ψ) = −ε∂f(ψ + a(ψ),β0 + b(ψ))

with h(ψ) = (a(ψ),b(ψ))
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Resonant motions represented as power series
∑

k≥1 εk(a(k)(ψ),b(k)(ψ))

To order k the equations of motion become

(ω · ν)
2
a(k)
ν = [∂αf ]

(k−1)
ν ,

(ω · ν)
2
b(k)
ν = [∂βf ]

(k−1)
ν

,

and [∂αf ]
(k−1)
ν is

∑

p≥0

∑

q≥0

1

p!

1

q!

∑∗
(iν0)

p+1
∂q
βfν0

(β0)
( p∏

j=1

a
(kj)
νj

)( p+q∏

j=p+1

b
(kj)
νj

)
,

0 < kj < k ∀ j = 1, . . . , p + q; ∗←→1+
∑p+q

j=1 kj = k, ν0 +
∑p+q

j=1 νj = ν
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root ν=νℓ0

ℓ0

v0

νv0

v1

νv1

v2

v3

v5

v6

v7

v11

v10

v4

v8

v9

A tree θ with 12 nodes; one has sv0=2,sv1=2,sv2=3,sv3=2,sv4=2.

The rules for the graphical representation will be a bit different to
account for the two types of actions-angles. Changes marked in red

There will be two kinds of vertices v: nodes and leaves. Leaves can
only be endpoints, i.e. no lines entering them, nodes can be endpoints
or internal vertices.
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Lines exiting from leaves play a very different role with respect to the
lines exiting from the nodes.

v0 will be the last (i.e. leftmost) node, ℓ0 the root line; v′ denotes the
node following v (a different convention with respect to the earlier
discussion). v′0 = r but r will not be considered a node.

V (θ) = nodes, L(θ) = leaves and Λ(θ) = lines.

Any ℓv ∈ θ is root to subtree θℓv ⊂ θ.
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With each node v associate a mode label νv ∈ Z
r, and to each leaf v a

leaf label κv ∈ N. The order of the tree θ is

k = |V (θ)|+
∑

v∈L(θ) κv

With a line ℓ = (v′v) exiting a node v associate labels γ′
ℓ, γℓ, assuming

the symbolic values α or β and imagined affixed close to v′, resp., v
and a momentum label νℓ ∈ Z

r, as

νℓ ≡ νℓv =
∑

w∈V (θ)
w�v

νw,

while with a line ℓ exiting from a leaf v we associate only one label
γℓ = β.

On node v labels are also associated: branching labels pv, qv, denoting
how many α or, resp., β-labeled lines enter v, and a label δv, as

δv =

{
1, if γℓv = β,

0, if γℓv = α.
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Then with each node v associate node factor

Fv =
1

pv!

1

qv!

(
iνv

)pv+(1−δv)

∂qv+δv

β fνv
(β0),

a tensor of rank pv + qv + 1.
With each leaf v we associate a leaf factor

Lv = b
(κv)
0

,

a tensor of rank 1 (a vector) to be defined.

To line ℓ exiting from node v associate a propagator

Gℓ
def
= δγℓ,γℓ′

1

(ω · νℓ)2
,

a (diagonal) r × r matrix

No small divisor is associated to lines ℓ exiting leaves; let

Gℓ
def
= δγℓ,γℓ′

δγℓ′ ,β
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Define the value and the reduced value as

Val (θ) =
( ∏

v∈V (θ)

Fv

)( ∏

v∈L(θ)

Lv

)( ∏

ℓ∈Λ(θ)

Gℓ

)
,

Val ′(θ) =
( ∏

v∈V (θ)

Fv

)( ∏

v∈L(θ)

Lv

)( ∏

ℓ∈Λ(θ)\ℓ0

Gℓ

)
,

where ℓ0 = root line. Formally, a
(k)
0

= 0 and for ν 6= 0,

a(k)
ν =

∑

θ∈Θk,ν,α

Val (θ), b(k)
ν =

∑

θ∈Θk,ν,β

Val (θ),

b
(k)
0

= −
[
∂2
βf0(β0)

]−1 ∑

θ∈Θ∗
k+1,0,β

Val ′(θ),

where ∗ means that the tree whose reduced value is given by

∂2
βf0(β0)b

(k)
0

has to be discarded from the set Θk+1,0,β .
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If ∂βf0(β0) = 0, det ∂2
βf0(β0) 6= 0 then are finite for all

ν ∈ Z
p \ {0} to all orders k.

Summarizing: θ with k lines (and without nodes with 0 harmonic
and just one entering line carrying a 0 current) we define its value

Val (θ) =
εk

k!

( ∏

v∈V (θ)

Fv

)( ∏

ℓ∈Λ(θ)

Gℓ

)
,

Fv =
∏

j

∂γj fνv (β0),

Gℓ ≡ δγℓ,γ′
ℓ

1

(ω · νℓ)2
, if νℓ 6= 0,

Gℓ ≡ −ε−1 (∂2
βf0(β0))

−1
γℓ,γ′

ℓ
, if νℓ = 0, and γℓ, γ

′
ℓ > r

Gℓ ≡ 0, if νℓ = 0, and γℓ with γ′
ℓ ≤ r

hence division by 0 is forbidden: (Poincaré); .

If Θo
q,ν,γ = θ’s with degree q and no divsion by 0 ⇒ Lindstedt series

εqh(q)
ν,γ =

∑

θ∈Θo
q,ν,γ

Val (θ)
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