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Key result in equilibrium has been virial expansion convergence→ complete
very detailedequilibrium rarefied gases at high temperature in Gibbs states.

It is highly desirable to achieve a similar understanding insystems in
stationarystates out of equilibrium.

Difficulty: in equilibrium systems enclosed in finite containershave a
probability distribution and correlation with a density onphase space.

This is no longer true for systems in steady non equilibrium:however
correlations exist up to a large fraction of the number of degrees of freedom
(henceall in infinite systems).

Fields 04-2011 1



Existence of stationary states of flowless hard spheres gas with T±∞ different.
Which are the equations for the correlations?(Cercignani, Spohn)

−∞

Fig.1: A hyperboloid-like container Ω.
Shape is symbolic (d=3)

Stationary regular BBGKY hierarchy (hard core):

+∞

∂tρ(pn, qn) = 0 =
n

∑

i=1

(

− pi · ∂iρ(pn, qn)

+

∫

σ(qi,q′n)
ω · (π − pi) ρ(pn, qn, π, qi + rω)dσω dπ

)

+

∫

Ω

ω · (π − π′) ρ(pn, qn, q, π, q + rω, π′) dq dσω dπ dπ′

+

∫

∂Ω

ω · π ρ(pn, qn, q, π) dσq dπ

ρ(qn, pn) differentiable in|qi − qj| > r with continuous derivs in|qi − qj| ≥ r.
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The “blue” terms are set to 0: as derived under thestrong continuity
assumption. Let

p′i = pi − ω · (pi − pj) ω, p′j = p + ω · (pi − pj) ω ω (pi − pj) > 0

with qj = qi + rω be apair collision.

pi

p′i

p′j

pj

ω

Let (qn, pn), (qn, p′n) with

p′n = (p1 . . . p′i . . . p′j . . .)

pn = (p1 . . . pi . . . pj . . .)

be incoming and outgoing momenta

Strong continuityis

ρ(qn, p′n) = ρ(qn, pn)

It can be shown (Marchioro-Pellegrinotti-Presutti, Spohn) that strong
continuity is conserved outside a set of 0 phase volume if

(a) system is finite
(b) it is true initially

Furthermoretheblueterms vanish identically.
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Notations

Reference state: activity=z0, temperature=̙−1
0 . Maxwellian:

Gqn (pn)
def
=

e−
1
2 ̙(qn) pn·pn

√

(2π)nd det̙(qn)−1
,

If x is a Gaussian v.,C
def
= 〈 x2 〉, thenWick’s (i.e. Hermite’s) monomials are

: xk :
def
= (2C)k/2Hk(

x
√

2C
)

andρ(pn, qn) can be expanded in Wick’s (Hermite’s) monomials:

: pA
n :

def
=

n
∏

k=1

d
∏

α=1

: pak
α

k α
:, A = (a1, . . . , an)

wherea = (a1, a2, a3) ∈ Z3
+

are integers.
Let A±1

iα = (a′1, . . . , a′n) beA = (a1, . . . , an) with

ai
= (ai

1, ai
2, ai

3) ⇒ a′i, with a′iα = ai
α ± 1
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Expansion:

ρ(pn, qn) = Gqn(pn)
(

ρ∅(qn) +
∑

A,0

ρA(qn) : pn
A :

)

, A = (a1, . . . , an)

Look for BBGKY solution⇒ smooth coefficientsρA(qn) for |qi − qj| > r.

Possibly ordering them in terms of the sizes of

ε0
def
=

̙−
̙+
− 1 (temperature difference), ε(q)

def
=

̙(q)
̙+
− 1, andz0 (density)

An involved hierarchy of equations is derived with

(a) For each ρA(qn) the hierarchy involves ρA′(qm) with m = n + 1, |A′| = |A|
or ρA′(qn) with |A′| = |A|, |A| + 2, |A| + 4.

(b) Cancellation:|A| + 6 is missing

Up to boundary conditions:oddA and evenA are independent.

For completeness the equationswith no “blue terms”are explicitly written:
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BBGKY: Red= terms expected to yield all contributions ofO(ε0):

#1
∑

iα

{[

∂iαρB−1
iα
+ ̙(qi)

−1(bi
α + 1)∂iαρB+1

iα

]

#2 − 1
2

∂iα̙(qi)
∑

α′

[

ρ(B−2
iα′ )
−1
iα

(qn)

#3 + ̙(qi)
−1

(

2ρB−1
iα′

(qn)δαα′

#4 + (bi
α + 1− 2δαα′)ρ(B−2

iα′ )
+1
iα

(qn)

#5 + 2(bi
α′ − δαα′ )ρ(B−1−1

iα iα′ )
+1
iα′

(qn)
)

#6 + ̙(qi)−2
(

2δαα′(bi
α′ + 1)ρB+1

iα′
(qn)

#7 + 2(bi
α + 1)bi

α′ρ(B−1
iα′ )
+1+1
iαiα′

(qn)
)]

#8+
∫

s(qi;qn)
ωα

[

−̙(qi + rω)−1ρ(BA′)+1
(n+1)α

(qn, qi + rω)

+ ρ(BA′)−1
iα

(qn, qi + rω)

+ ̙(qi)−1(bi
α + 1)ρ(BA′)+1

iα
(qn, qi + rω)

]

dσω

}

= 0

Of course we have to check that the “blue” terms vanish identically in the
solutions: this will bestrictly required.
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Key example: the equation forρ∅(qn) is, simply,

− ∂iαρ∅(qn) +
∂iα̙(qi)

̙(qi)
ρ∅(qn) −

∫

σ(qi,q′n)
ωαdσω ρ∅(qnqi + rω) = 0

Eq. admits exact solution, close to the reference statez0, ̙−1
0 : i.e the hard

spheres gas equilibrium correlations with activityz(q)
def
= z0

̙(q)
̙0

Special case:Then up toO(ε2
0) andO(z2

0) it is

̙−1
0 ∂q

(

12ρ400− 4ρ220+ ρ211

)

= −1
2

ρ∅(q)∂qε(q)

Impossibleunlessρ∅(q) is a function of̙ : true up toO(z2
0).

Next order inz0 would require

ρ∅(q) = z0
̙(q)
̙0

(1− z0c2

∫

s(q)∩Ω

̙(q′)
̙0

dq′)

= function̙(q): away from∂Ω true if ̙(q) is harmonic

Illusory (see below) BUT⇒ idea:harmonicity≡ solubility condition
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Open problem: is a functionf (q) in Ω with theproperty of the mean

f (q) =
∫

s(q)∩Ω
f (q′)

dq′

c2
, c2 =

4π

3
r3

for all ballss(q) ⊂ Ω of fixed radiusr, harmonic at least “far from∂Ω”?

Even if yes this cannot be used here because, toO(z2
0), ρ2(q1, q2) contributes

and the argument is not conclusive!

From the theory of the Mayer expansionρ∅(q) would be a function of̙ (q)
even up toO(z3

0). Yet: the argument is really incorrect, as shown by

Ansatz: ρA(qn) = 0 if |A| = 1, 2 and

(

ρ∅(qn) +
∑

a1,...,an

ρa1,...,an(qn)
n

∏

i=1

: (̙(qi)p2
i )ai

:

(2ai)!!

+

∑

i,α

∑

a1,...,an

ρi,α;a1,...,an(qn)
1

√

̙(qi)
∂piα

n
∏

i=1

: (̙qi p
2
i )ai

:

(2ai)!!

)

i.e.
Even correlations functions of the

∏

i : (p2
i )

ai
: only.

Odd correlations functions of first derivatives∂pjα

∏

i(p
2
i )ai

only.
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Fundamental solution, from the ansatz:

Even correlations: exactby recurrence,ε(q)
def
=

̙(q)
̙0
− 1, ε0

def
=

̙−
̙+
− 1,

ρeven(qn, pn) = ρ∅(qn)
n

∏

i=1

ϕ(qi, pi) with

ϕ(q, p)
def
= G̙(q)(p)

̙0

̙(q)
(

∞
∑

k=0

(ε(q)k
+ ε(q) (−1)k)
(2k)!!

: (̙(q)p2)k :
)

Odd correlations: exact

ρodd(qn, pn)G̙0(pn) = zn
0 δn>1

n
∑

i=1

G̙0(pn)

·
(

r ∂iF(qi) · ∂pi

∞
∑

k=0

(−̙0)k : p2k
i :̙0

(2k)!!

)
∏

j,i

K(pj)

whereK(p)
def
=

∑∞
a=1 C(a) : p2a :̙0 with theC(a)’s arbitrary, AND

− ∆F(q) = 0, in Ω, ∂nF(q) = 0, in ∂Ω
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So farnoapproximation. But̙ (q) arbitrary!

Given̙± ( ̙0 = ̙+ < ̙− ≡ ̙0(1+ ε0)): which B.C.?

Boundary conditions: (ε0
def
=

̙−
̙+
− 1, ε(q)

def
= ( ̙(q)

̙+
− 1))

(a) Equilibrium at ±∞ for position correlations: (ρ∅(qn) =
∫

ρ(qn, pn)dpn)

ρ∅(qn)−−−−−−→qn→±∞ equilibrium with suitable activityz±

(b) Collision continuity:

p′i = pi − ω · (pi − pj) ω , p′j = p + ω · (pi − pj) ω ω (pi − pj) > 0

However do we have to require continuity?

Fields 04-2011 10



Not necessarily

Continuity (strong) is generally demanded (Cercignani, Lanford) in the
context of Boltzmann-Grad limit (not always, see Spohn).

But no proof available:

(1) at finite volume and out of equilibriumcorrelations not even definedin
SRB states

(2) if the initial stateµ has the property (not easy to impose)µt keeps it
forever (Spohn): howeverdiscontinuity might develop att = +∞
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Go back to Maxwell and Boltzmann: their theory is based on theequations

∂q

∫

Q(p) ρ(q, p)dp =
∫

ω·(p−π)>0
(Q(p′) − Q(p)) ω · (p − π) ρ(q, q + rω, p, π)dσωdp dπ

implied byBBGKY + continuity and we call itweak continuity.

Maxwell: usesonly for Q = collision invariants or energy flow

Q(p) = (1, pα, p2, pαp2)
def
= QM

(b’) Weak collision continuity: require it for a familyQ of observables.
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To proceed “leave exact world”: we are able to impose weak continuity to
lowest (non trivial) order inε0 andz0 and away from boundary ofΩ: i.e. if
ℓ(q) = distance ofq, q + rω from ∂Ω up to

O(ε2
0, ε0(z0r3)3, (z0r3)ℓ(q)/r)

Beginwith Q(p) = p2: using the exact solitions(b’) requires

0 =
∫

s(q)∩Ω
ρeq(q, q + rω) (̙(q) − ̙(q + rω)) dω

At distanceℓ from ∂Ω theρeq(q, q + rω) is rotation and translation invariant

up toO((z0r3)ℓ/r) by Kirkwood-Salsburg theory of the Mayer expansion.
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⇒Weak continuity for energytrueif ̙(q) is harmonic(Fourier).

BUT there are infinitely many other conditions:

“all even” Q(p) = p2sx
x p

2sy
y p2sz

z with sx + sy + sz > 1 &

“all odd” Q(p) = pαp2sx
x p

2sy
y p2sz

z , s
def
= sx + sy + sz > 0:

Remarkably: the freeC(a) determined 1-quely by(b’) for all odd
observablesfor all s with s > 0 providedF(q) = ε(q) solving:

(2s + 3)!!
3(s + 3)2ss!

=

∞
∑

k=1

γs,k
(−1)k
√

2π
k!2kC(k), γs,k

def
=

(

k − (s + 3
2)

−(s + 3
2)

)

It remains the weak continuity forQ = pα, 1 (momentum and mass transport)
and for the even observables of higher degree than 2. ForQ = 1 it also holds.

However for the momentum (s = 0) it cannot be satisfied(unless̙ = const).
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Either such continuity is given up or more general solutionsare needed.If so
weak continuity has to be rediscussed and harmonicity of̙ may be lost.

This is precisely what happens: other exact solutions can befound which
however cntain many more free constants which can be used to impose weak
continuity for all observablesQ: at the price that the solutions become quite
trivial.

Question: should also weak ontinuityfor all observablesQ (including
(p2)333) be given up? if so on which grounds?

Conclusions

0) All solutions areexactbut the boundary conditions are imposed only to
lowest nontrivial order.

1) There are many “exact” solutions: all of them arecompatiblewith the
heat equationwithout implying it

2) Arbitrary constants aredeterminedby requiring “boundary conditions” or
other physical properties
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3) Strong continuity might beincompatiblewith BBGKY stationary in
nnequilibrium (i.e. “ just as the Boltzmann equation is”)

4) Heat conductivitycan be expressed in terms of the solutions considered to
lowest order:

χ = b

√
kBT
r2

kB

It depends on a special combinationb of the parameters so far free: it turns
out that ifb , 0 then̙(q) must satisfy the property of the average, “hence” it
has to be harmonic.

5) It seems that any progress can come from success in findingmore
solutionsthat allow us to impose boundary conditions to higher order in
̙+ − ̙−. Which are the proper boundary conditions seems not known (are
multiple collisions involved?).

6) Smooth potential?: the equation forρ∅ does not seem easily soluble.
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Other solutions: add to the exact solution above any other solution of the
BBGKY. Furtherexactsolution isρ′ + ρ′′:

ρ′(q1, q2, p1, p2)
def
= ̙0z2

0

(

H(q1)U(p2)
∞
∑

k=0

(−̙0)k : (p2
1)

k :

(2k)!!
G̙0(p2) + (1←→2)

)

ρ′(q, p)
def
= − z2

0̙0H(q)U(p)G̙0(p), H(q)
def
=

∫

s(q)∩Ω
H(q′)dq′

ρ′′(q2, p2)
def
= ̙

1
2
0 z2

0

(

Ξ(p2) · ∂q1D(q1)
∞
∑

k=0

(−̙0)k : (p2
1)

k :

(2k)!!
G̙0(p) + (1←→2)

)

ρ′′(q, p)
def
= −̙

1
2
0 z2

0Ξ(p) · ∂ D(q), D(q) =
∫

s(q)∩Ω
D(x) dx

whereU(p)
def
=

∑∞
k=1 uk : (p2)k :̙0, Ξ(p)α =

∑∞
k=0 xk : pα(p2)k :̙0 with uk, xk

arbitraryparameters andH(q), D(q) harmonic functions solves forq1, q2 at
distance> r from ∂Ω.
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Weak continuity forQ = 1, pα can be obtained by fixingu1 = 1,
uk = 0, k ≥ 2.

However theuk remain undetermined and can be used to obtain continuity
for all theQ’s: butwhenever weak continuity is imposed for allQ’s the
result is a rather trivial solution and no condition on̙ arises..

Giving up requiring weak continuity for allQ’s can imply that̙ has to be
harmonic: for instance the conditionb

∫

s(q)∩Ω(̙(q + rω) − ̙(q))dσω = 0 with
b a suitable combination of the free constants.

It turns out that the constantb is thesame that determines the heat
conductivityχ = bkB

r2

√
kBT: hence “harmonicity” of̙ would be implied by

heat conductivityχ , 0.
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