
Thermostats, large deviations and Fouriers law

by Errico Presutti, Guido Gentile, Alessandro Giuliani, GG

Thermostat models (Feynman-Vernon 1963): finite system in contact
with infinite. Examples

C1

C2

C3

C0

Ω 1 Ω 0 Ω 2

Initial state:

µ0(dx)
def
= C e−

∑v
j=0

βjHj(Xj ,Ẋj)
∏

j

dXj dẊj

Nj!
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Equations of motion (thermostat force if a = 1)

mẌ0i =− ∂iU0(X0)−
∑

j>0

∂iU0,j(X0,Xj) + ∂iΨ(X0) + Φi(X0)

mẌji =− ∂iUj(Xj)− ∂iU0,j(X0,Xj) + ∂iΨ(Xj)− aαjẊji

Uj(Xj) =
∑

q,q′∈Xj

ϕ(q − q′), j-th thermostat energy

U0,j(X0,Xj) =
∑

q∈Ω0,q′∈Ωj

ϕ(q − q′), j-th thermostat-system interac.

Ψ(X) =
∑

q∈X

ψ(q), Wall potential

Initial state: infinite Gibbs at given density δj and temperatures β−1
j
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If no phase transitions ⇒ kinetic-potential energy density, density etc
are constant with µ0-probability 1 at time t = 0: examples

lim
Λ→∞

1

|Λ ∩ Ωj |
Kj,Λ(x) =

d

2
β−1
j δj , lim

Λ→∞

1

|Λ ∩Ωj |
Nj,Λ(x) = δj

lim
Λ→∞

1

|Λ ∩ Ωj |
Uj,Λ(x) = uj

• Thermostats evolution: should be limit of finite volume ???

• Macroscopic thermostats data: (Tj , δj , uj) should be constant ???

• Equivalence of thermostats: a = 0 SAME a = 1, ????
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More formally:

• Regularize: enclose system in ball Λn = Ω ∩ B(R) radius R = 2nrϕ

• ⇒ Time evolutions x→ S
(n,a)
t x, a = 0, 1 have limits as n→ ∞ ??

• should also be also limn→∞ S
(n,a)
t x = S

(0)
t x a = 0, 1 ??

• Temperature, density, energy density should be constant

∀t, j > 0, e.g.

lim
Λ→∞

1

|Λ ∩ Ωj|
Kj,Λ(S

(0)
t x) =

d

2
β−1
j δj ≡

d

2
kBTjδj ??

Entropy: thermostats entropy “increases” by

σ0(x) =
∑

j>0

Qj

kBTj(x)
, Qj

def
= − Ẋj · ∂XjU0,j(X0,Xj)
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History:

Existence: Theorem by Caglioti, Marchioro, Pulvirenti (2000), d = 3

Remarkable conclusion of a series of works by

Lanford (1968) 1 dimension (constructive, for “general” states)

Sinai (1971) 1 dimension (a.e. general states, “cluster dynamics”)

Marchioro, Pellegrinotti, Presutti (1974) (a.e. only for Gibbs, ∀d)

Dobrushin Fritz (1975) (a.e. for dim.=2 general states)

Control via specific energy in large balls: of radius R ≡ Rn
def
= 2n r
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W (x; ξ, R)
def
= total energy

ϕ0
+ number of particles in ball B(ξ, R)

E(x) def= sup
ξ

sup
R>(log+( ξ

rϕ
))1/d

W (x; ξ, R)

Rd

ξr (log |ξ|
r )

1
d

Cξ

|ξ|

O

This means:
densities constant on “log-scale”

ξ

Large deviation for µ0 ⇒ E(x) < +∞.
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Theorem: ∃C(E), c(E)−1 ↑ E and if qi(0) ∈ Λk (v1 =
√

2ϕ(0)
m )

(1) |q̇(n,0)(t)| ≤ v1 C(E) k1/2,

(2) distance
(
q
(n,0)
i (t), ∂(∪jΩj ∩ Λ)

)
≥ c(E) k−3/2α rϕ

(3) Ni(t, n) ≤ C(E) k3/4

(4) |x(n,0)i (t)− x
(0)
i (t)| ≤ C(E) rϕ e−c(E)2nd/2

∀n > k. The x(0)(t) is unique frictionless motion satisfying 1,2,3.

(5) limn→∞ S
(n,1)
t (x) ≡ S

(0)
t (x), with µ0-probability 1
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Λn–regularized Gaussian thermostats: thermostats force αj,n so fixed
that Uj,Λn +Kj,Λn = Ej,Λn is exact constant of motion

αj,n
def
=

Qj

dNjkBTj(x)
, Qj

def
= − Ẋj · ∂jU0,j(X0,Xj)

with mẊ2
j

def
= 2Kj,Λn(x)

def
= dNjkBTj(x)

Idea: Why to expect Equivalence? (in therm. lim. Λn → ∞)

Qj
def
= − Ẋj · ∂jU0,j(X0,Xj) = O(1)

(Williams,Searles,Evans 2004), hence

αj =
Qj

dNjkBTj,n(x)
−−−−→n→∞ 0.

But is Tj,n(x) ≥ c > 0 ?? not ∀x! ⇒ Large deviation
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Theorem (Presutti, G): with µ0–probability 1

(a)
Kj,Λn(x)

|Λn∩Ωj|
≥ 1

4
d δj kBTj (hence α−−−→n→∞ 0).

(b) limn→∞ S
(n,1)
t x = limn→∞ S

(n,0)
t x for all t > 0.

(c) dµt(dx)
dt = −σ(x)µt(dx) and

σ(x) =
∑

j>0

Qj

kBTj(x)
+ β0(K̇0 + U̇0 + Ψ̇0)

def
= σ0(x) + Ḟ(x)

(1) Small kinetic energy is possible but large deviation

(2) Entropy production = volume contraction + a time derivative:

⇒ (average of σ) ≡ ( average of σ0)

provided βj(x) is a constant of motion as n→ ∞ and βj(Stx) = βj :
very generally phase space contraction = physical entropy production.
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Method: “Entropy estimates” for thermostatted motions control large
deviations

(I) Proof that kinetic energy per particle (in the Λn–regularized
motion) stays > d

4δj β
−1
j with µ0-probability 1 for t ≤ Θ: i.e stays

≥ 1
2 the equipartition value

(II) Proof that the number of particles and their (kinetic+wall)
energy in a unit box grows at most with a power γ ∈ (12 , 1) of

(log+(|ξ|/rϕ))
1
2 · (logn)γ

Combining ideas of Sinai, Fritz-Dobrushin, and Marchioro,
Pellegrinotti, Presutti, Pulvirenti (1975,1976).
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Let (log
1
d -growth of energy and energy density with distance to O):

||x|| def= max
ξ∈Λn

max(NCξ
(x), εCξ

(x))

rd(log+(ξ/rϕ))
1/d

Cξ
def
= unit cube centered at ξ, NCξ

(x)= number of particles in Cξ,

ε2Cξ

def
= maxq∈Cξ

(12 q̇
2 + ψ(q))/ϕ0. kinetic + wall energy

ξ

r(log |ξ|
r )

1
d

Cξ

|ξ|

O

densities grow “log-distance”

ξ
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1) Define for x s.t. E(x) ≤ E, the stopping time Tn(x)

Tn(x)
def
= max

{
t : t ≤ Θ : ∀ τ < t,

Kj,n(S
(n,1)
τ x)

ϕ0
> κ2nd, ‖S(n,1)

t x‖n < (log n)γ
}
.

2) show that before the stopping time frictionless and thermostatted
evolution are very close for particles within Λk provided cut-off n≫ k.

(Indeed within Tn(x), α is very small of order O(N−1
n )).

Notice also |σ| = O(1) depending only on E.

3) Check µ0-probability of B def
= {x |x ∈ XE and Tn(x) ≤ Θ} is

µ0(B) ≤ C e−c(logn)2γ , Borel-Cantelli.

because entropy bounds the µ0 density of µ0(S−t·) before Tn(x)
allows us to bound via equilibrium large deviations ⇒
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Estimate the probability of Xn
def
= {E(x) ≤ E; Tn(x) < Θ}.

(2) ⇒ bound on the max entropy production within the stopping

time: |
∫ τn(x)

0
σ(S

(n,1)
t x)dt| ≤ C′ with C′ depending only on E.

For inst. estimate probab. that kinetic energy G becomes 1/2 of its
µ0-almost sure asympt. value: G = 1

4Njdβ
−1
j . IF µ0 were invariant

dsdτ
def
= (

∫
µ0(dx)|K̇ |δ(K −G))dτ

dτ
dτ

dτ

G ds

Remark: all shaded volumes would have the same µ0 volume !
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BBGKY hierarchy, Fourier’s equation

(in progress)

by Guido Gentile, Alessandro Giuliani, GG

It is highly desirable to achieve a understanding similar to the one
that can be obtained in systems in stationary states out of
equilibrium.

In equilibrium systems enclosed in finite containers have a probability
distribution with a density on phase space. This is no longer true for
systems in steady non equilibrium.

Study existence of stationary states of a hard spheres gas with
temperatures at ±∞ different: ρ±∞(qn) correspond to ρ± and
3
2β

−1
± = 〈 p2i 〉.
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−∞

Fig.1: A hyperboloid-like container Ω.

Shape is symbolic (d=3)

Stationary regular BBGKY hierarchy (hard core):

+∞

∂tρ(pn,qn; t) = 0 =

n∑

i=1

(
− pi · ∂iρ(pn,qn; t)

+

∫

σ(qi,q′

n)

ω · (π − pi) ρ(pn,qn, π, qi + rω; t)dσω dπ
)

def
= BBGKY n(ρ(t))

ρ(qn,pn) diff.ble in |qi− qj| > r with continuous derivs in |qi− qj | ≥ r.

Has this anything to do with Physics???

• Equation holds (Cercignani) at t = 0 in finite volume, smooth initial

DN (pN ,qN ) = DN (p′
N ,qN )

pair collision continuity ((pN ,qN ) before) and ((p′
N ,qN ) after).
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pi

p′i

p′j

pj
ω

p′

n=(p1...p
′

i...p
′

j ...)

pn=(p1...pi...pj ...)

Fig.2

• BUT smoothness lost at t > 0 and singularities become dense with t
although kept on a set of volume 1 in phase space, and continuity too.

• Nevertheless Lanford has shewn how to derive, by simple iteration,

ρ(pn,qn; t) = ρ(pn,qn; 0) +

∫ t

0

BBGKY n(ρ(t
′)) dt′

the B.E. in the Grad limit and Spohn has proved iteration correct in
spite of singularities acquired by correlations, densely on phase space

• Thus if a stationary state is studied the equation looks precarious
“workig hypothesis”.
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Heuristic approach: look for solutions of the regular BBGKY equation

Boundary conditions:

(1) Equilibrium at ±∞ at given T+ > T−:

ρ∅(qn)−−−−−−→qn→±∞
equilibrium with suitable activity z±

The condition is not “Gibbs at infinity” but only Gibbsian positional
correlations ⇒ more freedom but possible interpretation problems.

(2) Collision continuity: Inspired from original Maxwell’s form of
the Boltzmann’s equation if suitable factorization of ρ is added 1866.
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(2) Collision continuity: if p1, p2 ⇒ p′1, p
′
2 is a collision btwn q1 and

q1 + rω (with ω · (p2 − p1) < 0) in the direction ω then (strong form)
of continuity (strong) is generally demanded ( not Spohn).

ρ(qn,pn) = ρ(qn,p
′
n)

too strong. It admits a “weak form”: for all 1-particle observ. Q(p)

3∑

α=1

∂α

∫
ρ(p, q)pαQ(p)d3p =

·
∫

ω·(p−π)>0

|ω(π − p)| · (Q(p′)−Q(p)) ρ(p, q, π, q + rω) d3p d3π dσω

and ∀q ∈ Ω if p, π ⇒ p′, π′ after elastic scattering in the cone dω.

If true ∀Q’s equivalent to collision continuity for pair correlations only.

Even this weak continuity might be too strong:

no continuity proof is available: (and it will not be availble for long).
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Problems

(1) at volume <∞ and out of eq. correl. not even defined in SRB

(2) if the initial state has the property it keeps it forever (Spohn):
however discontinuity might develop at t = +∞

as they do in the other limit of Grad.

Questions:

(a) Are there exact solutions of the BBGKY?

(b) If yes which weak continuity conditon can be imposed?

Answer to (a) yes

Answer to (b) Q(p) = 1, 1
2
p2 and others, but not Q(p) = p !!!
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Exact solution:

ρeven(qn,pn) = ρ∅(qn)
n∏

i=1

ϕ(qi, pi)

ε(q)
def
=
β(q)

β0
− 1, ε0

def
=
β−
β+

− 1, ϕ(q, p)
def
=

β0
β(q)

(
Gβ0

(p) + ε(q)δ(p)
)

Boundary c. imposed at 1-th order in ε0 (temperature difference) by

0 =

∫

ω(p−p̃)>0

Q(p)dpdp̃dσω

(ρ(q, p, q + rω, p̃)− ρ(q, p′, q + rω, p̃′))ω · (p− π)

demanded for Q(p) = p2 for elastic collisions

p′ = p− ω · (p− p̃)ω, p̃′ = p̃+ ω · (p− p̃)ω

and only up to O((z0r
3)ℓ/r, ε20) if ℓ = distance of q from qn and ∂Ω.
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A brief computation shews that this is equivalent to

0 =

∫

s(q)∩Ω

ρeq(q, q + rω) (β(q) − β(q + rω)) dω

At distance ℓ from ∂Ω the ρeq(q, q + rω) is rotation and translation
invariant (up to O((z0r

3)ℓ/r) by K.S. theory of the Mayer expansion.

Hence up to an exp. small error on microscopic scale, O((z0r
3)ℓ/r):

∫

s(q)

(β(q + rω) − β(q)) dω = 0

True if β(q) is harmonic (i.e. if Fourier Law holds).
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Also Dirichlet b.c. on ∂Ω can be considered as well as other
geometries can be considered. For instance conic geometry

β+∞

R
βR

O

Fig.2: Ω is a cone with vertex at O

truncated at a distance R from its

vertex; T (q) = T0 + τ (q) solves ∆T

= 0 with ∂nT = 0 on ∂Ω and value

τ
−

at bottom of Ω and τ+ = 0

at ∞: i.e. τ
−
= δ

R
, τ+ = 0

special case

O

∞
Fig.3: A special case of Fig.2

the “exterior problem”, i.e.

the heat conduction outside a

ball: a “hot potato” problem.

It has an exact solution T (q).

R
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A geometry with a long cylinder which opens up in two reservoirs

+∞

−∞

H

Fig. 4
The container Ω is a cylinder of dia-

meter ξ and height Hggξ ≫ r conti-

nued into two cones extending to ∞.

The interpolating inverse tempe-

rature β(q) will be close to β+ at

the upper end of the cylinder and

close to β
−

at the bottom.

ξ

An essentially 1-dimensional geometry; temperature values at the top
and the bottom (dictated by the b.c. at ±∞ via the heat equation)
will be interpolated essentially linearly (“Saint-Venant’s principle”),
but δT = O(H−1).

Very different for Dirichlet (β(q) − β0 = const on ∂Ω) and Neumann
b.c. (∂nβ = 0 on ∂Ω)
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Consider both Neumann b.c. (∂nβ = 0 on ∂Ω) and Dirichlet
(β(q) − β0 = const on ∂Ω)

T−

T0

T+

ξ H

T−

T0

T+

ξ H
respectively.

The transients at the extremes decay exponentially on scale ξ of the
cylinder diameter.

References
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Some Details

Convergence x
(n,0)
i (t) → x

(0)
i (t), qi(0) ∈ Λk

|unk (t) = max
qi(0)∈Λk

|q(n,0)i (t)− q
(n+1,0)
i (t)|

2k

2n

2n+1

q
(n,0)
i (t) = q

(n,0)
i (0) + q̇

(n,0)
i (0) t+

∫ t

0 fi(x
(n,0)(τ)dτ ⇒ comparison

Subtract: n and n+ 1 relations (η = 3
2 + 3

α ) ⇒

unk (t) ≤ Cnη

∫ t

0

unk1
(τ)dτ k1 = k + C

√
n

#iteration steps ≫ ℓ = 2n/2 ⇒ |unk (t)| ≤ C (nηΘ)ℓ

ℓ!
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Why not “same” for thermostatted dynamics ?

unk (t) ≤ Cnη

∫ Θ

0

unk1
(τ)dτ + C2−nd k1 = k + C

√
n

#iteration steps is same ≫ ℓ = 2n/2 BUT
error CeCnηΘ 2−nd → ∞

Up to Stopping time properties

|q̇(n,1)i (t)| ≤ C v1
(
k log n)γ , |q(n,1)i (t)| ≤ rϕ (2k + C

(
k logn)γ)

⇒ N ≤ C (k logn)dγ , ρ ≥ c (k logn)−2(dγ+1)/α

Only (k log n)η particles interact with qi ∈ Λk

Compare x(n,1)(t) and x(n,0)(t) ℓ times 2kℓ = 2k + ℓ C (k logn)γ
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Compare x(n,1)(t) and x(n,0)(t) ℓ times 2kℓ = 2k + ℓ C (k logn)γ with
ℓ ∼ 2n/(logn)γ

ukℓ
(t, n)

rϕ
≤ C (k log n)η

(
2−nd +

∫ t

0

ukℓ+1
(s, n)ds

rϕΘ

)

This time the Lyapunov exponent is small

uk(t, n)

rϕ
≤ eC (k logn)ηC(k logn)η2−dn

+
(C (k logn)η)ℓ

∗

ℓ∗!
C (2k + k(logn)γ + k1/2)
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