Thermostats, large deviations and Fouriers law
by Errico Presutti, Guido Gentile, Alessandro Giuliani, GG

Thermostat models (Feynman-Vernon 1963): finite system in contact
with infinite. Examples

G

R Q, Q, Q,

G

Initial state:

po(dx) el o1 o= i BiH; (XX, )H%
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Equations of motion (thermostat force if a = 1)

mXo; = — 0iUp(Xo) Za Uo,j(Xo,X;) + 0;¥(Xo) + ®:(Xo)

7>0

mXji = — 0,U;(X;) — 0;Us (X0, X;) + i ¥(X;) — ac; X,

U;(X;) = Z olqg—q"), j-th thermostat energy
0,9’ €X;
U, (X0, X;) = Z o(g—¢'), j-th thermostat-system interac.
q€Q0,9'€QY;
X)= Z ¥(q), Wall potential
qeX

Initial state: infinite Gibbs at given density ¢; and temperatures B;l
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If no phase transitions = kinetic-potential energy density, density etc
are constant with po-probability 1 at time ¢t = 0: examples

1 d 1

A KAy e =500 I g ) =0
1

A T, U@ =

e Thermostats evolution: should be limit of finite volume 777
e Macroscopic thermostats data: (T}, d;,u;) should be constant 777
e Equivalence of thermostats: a =0 SAME a =1, 7777
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More formally:

o Regularize: enclose system in ball A, = QN B(R) radius R = 2"r,
e = Time evolutions x — St(n’a)x, a = 0,1 have limits as n — oo 77

e should also be also lim,,_; St(n’a)x = St(o)x a=0,177

e Temperature, density, energy density should be constant
Vt,j >0, e.g.

. 1 ) \ d, . d oo
Ah—>ngo WKJ’A(St IE) = 55] 5] = §kBT]5j ol
Entropy: thermostats entropy “increases” by
Q; def . P
oo(r) = % Qe =X, 0x,Un (X0, X;)

- S ksTi(x)
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History:

Existence: Theorem by Caglioti, Marchioro, Pulvirenti (2000), d = 3
Remarkable conclusion of a series of works by

Lanford (1968) 1 dimension (constructive, for “general” states)

Sinai (1971) 1 dimension (a.e. general states, “cluster dynamics”)
Marchioro, Pellegrinotti, Presutti (1974) (a.e. only for Gibbs, Vd)

Dobrushin Fritz (1975) (a.e. for dim.=2 general states)

Control via specific energy in large balls: of radius R = R, ©lony
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W(z; &, R) el total o0 + number of particles in ball B(, R)

E(x) def sup sup 7W(x; & R)

d
¢ R>(log, (55)1/4 R

r(log‘—f‘)i ot

This means:
densities constant on “log-scale” 4

* o

Large deviation for puy = £(x) < +o0.
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Theorem: 3C(E),c(E)"1 1 & and if ¢;(0) € A (v1 = QWT@)

(1) 1§ (1)) < v1 C(E) kY2,
(2)  distance(q\"” (1), (U0 N A)) > (&) =/ r,
(3) Ni(t,n) < C(€) k3/*

(4) |x§n,0) (t) — Iz(‘O) )] < CE)ry C,C(gﬂnd/z

Vn > k. The z(© (t) is unique frictionless motion satisfying 1,2,3.

(5) limy, oo S (2) = S (2),  with po-probability 1
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Ap-regularized Gaussian thermostats: thermostats force o, so fixed
that Uja, + Kja, = Eja, is exact constant of motion

def (2 j

def
Qg = dNJ]{’BTJ(T) ’

Q;= —X;-0;U0,;(X0,X;)

with mX2 < 2K\ (2) Y dN;kpT(x)

Idea: Why to expect Equivalence? (in therm. lim. A, — c0)

QY X, 0U0,;(X0.X;) = O(1)
(Williams,Searles,Evans 2004), hence

Q;
dekBTj,n(X) nereo

a5 = 0.

But is Tj ,(z) > ¢ >0 ?? not Va! = Large deviation
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Theorem (Presutti, G): with py-probability 1

(a) |K:r?n|) > 1d0; kgT; (hence o ——=0).
(b) limp o0 S M2 = limp o0 SV for all £ > 0.
(c) d“td—(tdw) = —o(x) u(dx) and

=> kBLJ() + Bo(Ko + Ug + o) = 00 (x) + F(x)
j>0

(1) Small kinetic energy is possible but large deviation
(2) Entropy production = volume contraction + a time derivative:
= (average of o) = ( average of og)

provided §;(z) is a constant of motion as n — oo and §;(S:z) = B;:
very generally phase space contraction = physical entropy production.
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Method: “Entropy estimates’ for thermostatted motions control large
deviations

(I) Proof that kinetic energy per particle (in the A,-regularized
motion) stays > %@- Bj_l with po-probability 1 for ¢t < ©: i.e stays
> % the equipartition value

(IT) Proof that the number of particles and their (kinetic+wall)
energy in a unit box grows at most with a power v € ( %, 1) of

(log (|€]/ry))? - (logn)”

Combining ideas of Sinai, Fritz-Dobrushin, and Marchioro,
Pellegrinotti, Presutti, Pulvirenti (1975,1976).
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Let (log é—growth of energy and energy density with distance to O):

]| % e 22XV (@), €0 (@)
EeN, rd(l()g+ (E/T@))l/d

Ce /it cube centered at &, Nc, ()= number of particles in Cg,

5205 déf maXgeC, (%QQ + 1/)((]))/(,90. kinetic + wall energy
L]
g
= Ce
densities grow “log-distance” (log |T_|)3/ ’
d
, 4
L0 Il
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1) Define for = s.t. £(z) < E, the stopping time T,,(x)

T (x) = max{t 1t <0O:Vr <t
K; n S‘I('ml) n
KinlS7 7 2) o om0y, < (logn)" }.
%0

2) show that before the stopping time frictionless and thermostatted
evolution are very close for particles within Ay provided cut-off n > k.

(Indeed within T}, (), « is very small of order O(N,1)).
Notice also |o| = O(1) depending only on E.

3) Check po-probability of B {z|z € Xg and Ty, (x) < O} is

uo(B) < C e cllosm)™ Borel-Cantelli.

because entropy bounds the pg density of po(S—_¢-) before T, ()
allows us to bound via equilibrium large deviations =
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def

Estimate the probability of X, {€(z) < E; T(z) < ©}.

(2) = bound on the maz entropy production within the stopping
time: |fT” @) S(" 2 z)dt] < C" with C” depending only on E.

For inst. estimate probab. that kinetic energy G becomes 1/2 of its
pio-almost sure asympt. value: G = 1 N;dS; . IF g were invariant

dsdr“ ( / 1o (d2)| K |5(K — G))dr

Remark: all shaded volumes would have the same gy volume !
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BBGKY hierarchy, Fourier’s equation
(in progress)

by Guido Gentile, Alessandro Giuliani, GG
It is highly desirable to achieve a understanding similar to the one

that can be obtained in systems in stationary states out of
equilibrium.

In equilibrium systems enclosed in finite containers have a probability
distribution with a density on phase space. This is no longer true for
systems in steady non equilibrium.

Study existence of stationary states of a hard spheres gas with
temperatures at oo different: pi.(q,) correspond to p1 and

8Bt = (p?).
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“+o00

Fig.1: A hyperboloid-like container Q.
> < Shape is symbolic (d=3)
Stationary 7(qulm BBGKY hierarchy (hard core):
—o0 atp(pnaqnat) :0: (_pi'aip(pnaqn;t)
i=1

+/ W (Tr_pi) P(PnaQnaW,Qi+Tw;t)dUw dﬂ-)
o(gi,ay,

def

f BBGKY n(p(t))

p(Qy, pr) diff.ble in |g; — ¢;| > r with continuous derivs in |¢; —g;| > 7.

Has this anything to do with Physics???

e Equation holds (Cercignani) at ¢t = 0 in finite volume, smooth initial
Dn(pn,an) = Dy (Ply,an)

pair collision continuity ((pw,qn) before) and ((p’y,an) after).
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P, =(p1...p}...pj...) Fig.2

Pn=(p1..-Di...Dj...)

o BUT smoothness lost at t > 0 and singularities become dense with ¢
although kept on a set of volume 1 in phase space, and continuity too.

e Nevertheless Lanford has shewn how to derive, by simple iteration,

t
p(Drs @i ©) = p(Ps 03 0) + / BBGKY ,(p(t')) dt’
0

the B.E. in the Grad limit and Spohn has proved iteration correct in
spite of singularities acquired by correlations, densely on phase space

e Thus if a stationary state is studied the equation looks precarious
“workig hypothesis”.
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Heuristic approach: look for solutions of the regular BBGKY equation
Boundary conditions:

(1) Equilibrium at +oo at given T} > T_:

po(dn) P~ equilibrium with suitable activity z4

The condition is not “Gibbs at infinity” but only Gibbsian positional
correlations = more freedom but possible interpretation problems.

(2) Collision continuity: Inspired from original Maxwell’s form of
the Boltzmann’s equation if suitable factorization of p is added 1866.
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(2) Collision continuity: if p1,pa = p},p} is a collision btwn ¢; and
g1 + rw (with w - (p2 — p1) < 0) in the direction w then (strong form)
of continuity (strong) is generally demanded ( not Spohn).

p(An; Pn) = p(dn, Py,)

too strong. It admits a “weak form”: for all 1-particle observ. Q(p)

Za/ (P, 9)PaQ(p)d’p =

[ ) QW) ~ QN ptp. w0 + ) 'y

—7)>0
and Vg € Q if p,m = p/, 7’ after elastic scattering in the cone dw.

If true V@Q’s equivalent to collision continuity for pair correlations only.

Even this weak continuity might be too strong:
no continuity proof is available: (and it will not be availble for long).
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Problems

(1) at volume < oo and out of eq. correl. not even defined in SRB

(2) if the initial state has the property it keeps it forever (Spohn):
however discontinuity might develop at t = +o0

as they do in the other limit of Grad.
Questions:

(a) Are there exact solutions of the BBGKY?

(b) If yes which weak continuity conditon can be imposed?

Answer to (a) yes

Answer to (b) Q(p) =1, %pz and others, but not Q(p) =p !!!
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Exact solution:

Peven (Qm pn) = Py (qn) H @(Qi,pi)
=1

def B(q) o B- def B
o) 0 1 e 2 1 la.n) Y 505 (Gap) +e(0)5(0)

Boundary c. imposed at 1-th order in € (temperature difference) by
0= [ Qdpdpao,
w(p—p)>0
(p(a:p,q +1w,p) — p(g, 9, q + 1w, p))w - (p — )
demanded for Q(p) = p? for elastic collisions
P=p-w-(p-pw,  pP=p+tw (p-pw

and only up to O((zor3)*/7, ) if £ = distance of ¢ from q,, and 9.
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A brief computation shews that this is equivalent to

o:/° pealdyq +1w) (B(g) — Blg + rw)) duw
s(q)NQ

At distance £ from 09 the peq(q, ¢ + rw) is rotation and translation
invariant (up to O((zor%)*/") by K.S. theory of the Mayer expansion.

Hence up to an exp. small error on microscopic scale, O((zor*)"/"):
| Bta+ )= (@) de =0
s(q)

True if 8(g) is harmonic (i.e. if Fourier Law holds).
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Also Dirichlet b.c. on 92 can be considered as well as other

geometries can be considered. For instance conic geometry
B—i—oo

Fig.2: Q is a cone with vertex at O
truncated at o distance R from its
vertex; T'(q) = To + 7(q) solves AT
=0 with 9,T =0 on 00 and value
T— at bottom of Q and T =0

. _ 3 —
BrA\ at co: t.e. T- =5, 74+ =0

special case

Fig.3: A special case of Fig.2
the “exterior problem?”, i.e.

the heat conduction outside a
ball: a “hot potato” problem.
It has an ezact solution T'(q).
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A geometry with a long cylinder which opens up in two reservoirs

+00
Fig. 4

The container 2 is a cylinder of dia-
meter £ and height Hgg& > r conti-
nued into two cones extending to co.

The interpolating inverse tempe-
rature 5(q) will be close to By at

the upper end of the cylinder and
Q close to B_ at the bottom.
—00
An essentially 1-dimensional geometry; temperature values at the top
and the bottom (dictated by the b.c. at £oo via the heat equation)

will be interpolated essentially linearly (“Saint-Venant’s principle”),
but 67 = O(H™1).

Very different for Dirichlet (8(q) — Bo = const on 0f2) and Neumann
b.c. (0,8 =0 on 09)
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Consider both Neumann b.c. (9,8 =0 on 992) and Dirichlet
(B(q) — Bo = const on ON)

: : respectively.
3 H 13 H

The transients at the extremes decay exponentially on scale £ of the

cylinder diameter.
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Some Details

Convergence 2. (t) — 79 (¢), 2:(0) € Ay

"0 )]

n (n,0)
t) = m
|uj; (t) ql(Ofae%\ |q (t) —

2n+

(n,0) -(n, 0)

q; () = q§7l’0) (0)+¢; 77 (0)t+ fof fi(z9(7)dr = comparison

Rl

Subtract: n and n + 1 relations (= 3 + 2) =

¢
up(t) < Cn”/ up (T)dr ki=k+Cvn
0

Hiteration steps > £ =22 = |ul(t)| < c! ”n@)i
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Why not “same” for thermostatted dynamics 7

e
up(t) < Cn”/ uy, (T)dT + c2"d ki =k+Cyvn
0

#iteration steps is same > (= on/2 BUT
error  CeCn"'O 2 nd _, o

Up to Stopping time properties

@V < O (klogn)?, gD (1)] < 1y (2 + C (k logn)?)

2

= N < C(klogn)®, p> c(klogn) 2t/

Only (klogn)" particles interact with ¢; € Ay

Compare z(™V(t) and z(™9 (t) £ times 2 = 2F + ¢ C (klogn)?
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Compare (™D (¢) and 2™ (t) £ times 2% = 2¥ + ¢ C (klogn)Y with
¢~ 2"/(logn)Y

t
. d
e tog (2—"d+/ Yhen (5 7)ds
Ty 0 TLPG)

This time the Lyapunov exponent is small

Uk(t,n) < eC (k logn)"c(k 1Ogn)n27dn

(C (k logn)")""

t e C (2F + k(logn)” + k'/?)
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