Resonances and synchronization
by Guido Gentile, Alessandro Giuliani, G@rXiv:1106.1476

1) Quasi integrable systems
2) Chaotic systems

A
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Unperturbed systerm motions will haveall spectra

—

A=A, d=a+ot, &= (on..., @)

= in particulara; rationally depend.e.g.(?. ..., @%,0,0,...

Such motions are calle@sonantmore generally

A=A+ X(ip :
Afkf@ peTl, V<
a=Ry+Y(P)
X, Y smoothR ¢ x ¢ integer matrix and the
i — i+t

give a solution to the eq. of motion theresonant
If ¢ = 1 periodic: since Poincaré; > 1

If 1 < ? < ? KAM-theory: mild conditionsbut non trivial
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Exampled = (ay, @) € TV x T*Y, f(a) = f(a, @)
X:(1), Y:(ip) analytic ine, i existwith domain including

A

complex
e-plane

f(a) = f%f(ab az)

> (@) =0. (@) <0
/ |@° - 7| > C|o|™*, Diophantine p.

Resonances exist reals points

(Llave-Zhou, Gentile-G)
“Intrinsic res”. “Extrinsic” res. orsynchronization

| Ql-

=A
= —£9;V(@) + eF(at)

9 motion with spectrun@ ? ¢ = 2 (Corsi-Gentile). Friction?
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Chaotic systems: paradigm Anosov flow periodically forced

1) volume preserving
2) dissipative

No quasi periodienotions andew periodicones: finitely many
with period less than any < c. So in this case only extrinsic
resonances properly can exisginchronization

1 1)\(x
w1 ol
X = 6(2)(Sx—X)
w=1 z=1

z

Z— clock

X 4
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X =6(2)(Sx— X) + &f.(x, w, 2)
W =1+ eg.(X, W, 2)
z=1

Zz— clock

Look at Poincaré’s mags att = 2nn

X =Sx+ f (X, W)

W =W + £0,.(X, W)
a) volume preserving (i = 0 theS is not even ergodic & has
one “central” Lyapunov exponent 0)
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Th. as close as wished (in®to f = § = 03 open set of
perturbations withS,

(1) Ergodic

(2) Central Lyap. exp?, > 0
(3) 4 S-invariant foliation
A into C'-smooth lines |

(4) Ik and E of full vol. s.t.
E N tis exactly k< co pts(!)

[Conjecturesk > 1 & k= 1]
SW 1999, RW 2001

No synchronization: inX, w, z) the planesv = constare
invariant under the P.-map bublatilize under perturbation

Is synch. possible in dissipation? which attractor stme2u
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1) Simplest possibility attractetperiodic orbit” on a orbit
close to an unperturbed periodic one.

2) An attractor of “pathological nature” like the volume
preserving cases but with Haustfalimension lower.

3) A periodic strange attractor: dissipation stabilizes @l&n
one among the unperturbed invariant surfages const

This can be easily tested in simulations: a variety of phesrtan
show up: consistent with 2) or 3). “Naivest” case

f=0, g(x,w, 2) = (sin@z—w) + sin(x; + z+ w))

(first studied) immediately shows an instance of (3). Specia

21
ol W) £ g(x, w + t, t)dt,

21 p)
j: aTvg(X’W+ t, t)dt
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Notice that in examplgo(x, ©) = 0, g1(X, ©) =T < 0, VX.

Th. If 3wy, 0 < & such that

Jo(X, Wo) =0, g1(X, Wp) =T < 0, ¥x then for0 < ¢ < &
(1) 3 attractor W(X) = W + U.(X)

e-plane _ . :
(2) U(x) is h-Holder continuous
0 h > Iolgfjlq e+ O(?)
D (3) U, is analytic ingin O

Assumptions can be relaxed into
(a) fozn dt g(x. wo + t, t) = £g(X), for someg(x),

(b) [ dt dug(x. Wo +t,t) < T, for T < 0,
Conjectures

(@) [ dtg(x, wo +t. t) = G(x), with G(x) with 0 average,
(b) fOZ" dt owg(X, Wo + t, t) = 91(X), with g1(X) with < O average.
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Basics
(x(t), w(t), t) = (x, w+t+u(xt),t), t € (0, 2r]
X =6(2)(Sx— X) + £f.(X, w, 2)
W =1+ &g.(X, W, 2)
z=1
Taylor expansion i to second order

u(x, 0) =U(x)
u(x, 2m) =U(SX

u(x, t) =eg(x, w + t + u(x, t), t)
=eg(X, Wo + t,t) + €9,9(X, Wo + £, t)u(x, t) + eG(X, t, u(x, t))

Solved “as a linear equation” in terms‘@f/ronskian”
def

r(xt.7)= [ augxw+y.y)dy
u(x, t) =eT*t9y(x, 0)

t
N f egl"(x,t.t)(g ag(x, Wo + 1, 7) + e G(X, T, U(X, I))) dt
0
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Ideas: equations and invariance conditifif(x, 2m, 0) = T < 0)
u(x, t) =eT*9y(x, 0)
+ f t esr(x*t'f)(sg(x, Wo + T, 7) + eG(X. T, U(X, 7:)))
U(SR :esfuo(x)

21
N f egF(X,ZTI,I)(gg(X’ Wo + 7, 7) + eG(X, T, u(X, I)))dt
0

The assumptionk < 0 andfozn a(X, wp + t, t)dt = O imply

U(, 2m)ke < €TIU(, O)le + O(e?) + O(elulZ) < €2 ul.,

if 5 <Ju(x.0l < 6with 6 smalland 0< & < 6.

Hencethere is an attractor in the slabd— 6, wy + 6]: but why
is it a surface?
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Next idea:replacesomes’s with u:
u(x. t) = *t9y(x, 0)+

f | & ™ (eg(x, Wo + 7. 7) + £G(X, T, U(X, 1))
0
U(S® =" u(x)

21
+ el (X’Zn't)(eg(x, Wo + T, 7) + eG(X, 7, U(X, I)))dt
0
1) Fix u small andproveexistence ofJ(x) analytic in
le] < C(n) complex.
2) StudyC(u) andshowC(i) > c+/p.
3) Conclude by =

Why Holder continuity? convergence éireduces the question
to first order. It is explicitly evaluated and shows the prtyef
tiny Holder continuity O(e).
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