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Non Equilibrium: lack of a model playing role of Ising in 2D.
Microscopic theory of heat conductionpen

Ruelle’s:NE Statistics= statistics of almost all initial data
chosen with the Liouville’s distr.

Non equilibrium— ma = —5V(d) +F + o(pB, 4)p.

Liouville invalid; phase space contracts (in average)rdts has
the interpretation oéntropy productior(g(n), p(n)) rate

Are there any exact results at all?

If the system is “very chaotic” yes:luctuation theorerfor
stationary statelf s% D L

Prob(se (x,x + ¢€)) T2 TX(o)
Prob(se (-x—&,-X))
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Prob(se (x, x + €)) Toeoo Tx(a)
Prob(se (-x—¢&,-X))
No free parameters. Applications?

Cohen-G: Chaotic hypothesis:a system is chaotic then it can
be supposed to be so “as much as possjble’it is “Anosov”

This allows to make use of the FT and‘test it”.
Of course you do not “test” theorems!

Rather tests chaotic hyp. which has the role of ergodic hyp. i
nonequilibrium: more proper to calluctuation relation

(a) many small systems must be quantum: CH? FR? FT?
(b) strong dissipatios= “small attractor” is CH reasonable?
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Quantum systems

fig.1

Particles inCo (“system”) interact with particles in shaded regions
(“thermostats”) constrained to fixed total K.E.

H operator orLz(CgNO), (symm/antisymm.) wave funct.¥,

2

h > VLY V7
Ag, + Uo(Xo) + Z (Ug (Xo, X)) + Uj(X) + K;)

H =
2 >0

Spectrum consists of eigenvalugs= E,({X;};-0), for X fixed.

MAQFTQTT 254/2012 4



Dynamical sys. on (P, ({)?j}, {)ﬁ(,- }i0) “phase space” def:

—inP(Xo) = (HY)(Xy), and forj > 0

def <W> - U def V< S O

o= ————, W= -X-§Ug(%. %)
2K;
22

((- )y = (Y| |¥)). Evolution keep¥; = %Xj exactly constant
(defining therm. tempT; via Kj = 3ksT;N;, as classical case).
NOT a time dep. Schrodinger egessential interaction
syst-thermos. This is aclassical Dynamical system.

Divergence: o(X) = k%,- + % (same asclassical)

Equations are reversible and chacticCH = SRB+ FT
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Consistency checksystem interacting with a single thermostat
the SRB distribution should be equivalent to the canonical
distribution.True in classical case).

Candidate fop: probability proportional ta¥ dX; d)-?l times

D e PE ISP — Wy (Xy) €47) dpn 5(X2 - 2K,)
n=1

= (??)expectation 0D is a Gibbs state of therm. equil. with a
special kind (randorXy, X;) of b.c. and temperatufg,.

(0), =2 ) e PE0D) (P (X)) O[W(Xe))5(X2 — 2Kq)dXy Xy
n=

But not invariant under evolution: flicult to exhibit explicitly
an invariant distribution (why should it be easf&sopus)
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Nevertheless ifdiabatic approximation (i.e’ the classical
motion of the thermostat particles is on a time scale much
slower than the quantum evolution of the system).

Eigenstates at time 0 evolve following the variations of
HamiltonianH (X(t)) due to thermostats particles motion,
without changing quantum numbend can check

u is stationary ifg is chosen such thgt = g% = (ksTy) L the
distribution(-), is stationary

Conjecture: true SRB ialso equivalent to Gibbs at temp.
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Under time evolution a time> 0 infinitesimal:

>_()1 i )_<)1 + t)_()]_ + O(tz)
E.(Xi) — E,+te,+O(t)  with

def = N - N .
€ = (X1 0g Vo), +1Xy-dxUs =t (Q1+Uy)

e FE(X) _, g pten

3Nien
2K

1

thermostat phase space contractgby= €

Thusif B ischosen such that 8 = g—k‘i = (kg T1) ! the distribution
(-), isstationary.

= possibility of defining the temperatuwa the FT ifQ is
measurable o if T is measurable (originally suggested by
Cugliandolo and Kurchan as a possible application of FT)
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Consider another non equilibrium case in which CH does not
hold exactly. In non equilibriundissipationoften leads to
trivial results

So we ask if at least in a simple case it would be possible to
checkthat the system at least develops a strange attractor.

And can the attractor be described in detail? and proved to be
non trivial? E.g. not a periodic orbit (either with a period close
to an unperturbed one (resonance) or with a period of the
external forcing (synchronization)? as it often happens.

Study a system which is “chaotic” but does not satisfy CH
assumptions

Natural case: subject a system for which the CH hypotheses
would hold to a periodic forcing.
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In absence of forcingo quasi periodienotions andew
periodicones: finitely many with period less than ahy co.

<[ ()

1
1
1
1
! X=01(2)(&X-x)
1
w 1 :‘ w=1 7z=1
/:-- ----- z
A x X 7 - clock
L0 X
X1

Look at Poincaré’s mas att = 27n

X =&, W =w
planesw = const are invariant. What about perturbations?
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| X =01(2)(X = X) + &f (X, w, 2)
\ :} W =1+ &g.(X, W, 2)
I 7=1
‘" 1
,' Lo z
’ X z— clock
7 Sax

X1
Look at Poincaré’s ma$ att = n

X = X+ef (W), W =w+eg,(x,w)

1gg a) volume preserving (i = 0 theS is not even ergodick
has onécentral” Lyapunov exponertera
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Theor.: Near (in C?) f = § = 0 3 open set of perturb. with S,

(1) Ergodic
(2) Central Lyap. expt, >0

(3) 4 S-invariant foliation
A into Ct-smooth lined

(4) Ak andE of full vol. s.t.
X2 En¢is exactlyk < co pts(!)

w §<
:X. §

-1y

,’/ = [Conjecturesk > 1 & k = 1]

No synchronifation: inx w, z) the'plarmess’= const are
invariant under the P.-map bublatilize under perturbation

b) Is synch. possible in dissipation? which attractor $tme?
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Three possibilities?
1) Simplest possibility attractetperiodic orbit” .
2) Attractor= “pathological ” (but with Hausddf dim. < 3).

3) A periodic strange attractodissipation stabilizes a single
one among the unperturbed invariant surfages const

X =61(2)(SX = X) + &f (X, W, 2)
w =1+ &9.(X, W, 2), z=1
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Casef =0

X=61(9)(X-X)
w =1+ &g.(X, W, 2), z=1
Simulations can be consistent with 2) or 3). “Naivest” case
f=0, g(X, w, 2) = (Sin(z—w) + sin(X, + z+ w))
(first studied) immediately shows an instance of (3). Specia

i [ dt
average perturbgo(x, w) = f g(x,w+t,t)§

2 dt
av. compressiorg; (X, w) g f —g(X,Ww+t,t)=— = cosw
e 0 8W e 9 271_

= sinw

Notice that in examplgo(x,7) = 0, g1(X,7) =T < 0, ¥x.
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Result: If 3 wp such that go(X, Wo) = 0, g1(X, Wp) =T < 0, VX,

thendeggfor0 < & < g

(1) 3 attractorw(x) = W + U.(X)

e-plane _ . .
(2) U.(x) is h-Holder continuous
o h> gore + O(e?)
D (3) U, is analytic ing in D

e=0
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Conjectures

@) foz’r dt g(x, wo + t, t) = g(x), with g(x) with O average,
() [ dt dug(x Wo + t, t) = u(x), with Tu(x) with < O average.
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