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Non Equilibrium: lack of a model playing role of Ising in 2D.

Microscopic theory of heat conduction:open

Ruelle’s:NE Statistics= statistics of almost all initial data
chosen with the Liouville’s distr.

Non equilibrium→ m~a = −~∂V(~q) + ~F + α(~p, ~q)~p.

Liouville invalid; phase space contracts (in average): itsrate has
the interpretation ofentropy productionσ(~q(n), ~p(n)) rate

Are there any exact results at all?

If the system is “very chaotic” yes:Fluctuation theoremfor

stationary state. If s
def
= 1

T

∑T
0
σ(~q(n),~p(n))
〈σ 〉

Prob(s ∈ (x, x + ε))
Prob(s ∈ (−x − ε,−x))

T→∞
= e−T x 〈σ 〉
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Prob(s ∈ (x, x + ε))
Prob(s ∈ (−x − ε,−x))

T→∞
= e−T x 〈σ 〉

No free parameters. Applications?

Cohen-G: Chaotic hypothesis:If a system is chaotic then it can
be supposed to be so “as much as possible”, i.e. it is “Anosov”

This allows to make use of the FT and to“test it”.
Of course you do not “test” theorems!

Rather tests chaotic hyp. which has the role of ergodic hyp. in
nonequilibrium: more proper to callFluctuation relation.

(a) many small systems must be quantum: CH? FR? FT?
(b) strong dissipation⇒ “small attractor” is CH reasonable?
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Quantum systems

T1

T2

T3

C0
fig.1

Particles inC0 (“system”) interact with particles in shaded regions
(“thermostats”) constrained to fixed total K.E.

H operator onL2(C
3N0
0 ), (symm./antisymm.) wave funct.sΨ,

H = −
~

2

2
∆~X0
+ U0(~X0) +

∑

j>0

(
U0j(~X0, ~Xj) + Uj(~Xj) + Kj

)

Spectrum consists of eigenvaluesEn = En({~Xj}j>0), for ~Xj fixed.
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Dynamical sys. on
(
Ψ, ({~Xj}, {

~̇Xj})j>0
)

“phase space” def:

− i~Ψ̇(~X0) = (HΨ)(~X0), and forj > 0

~̈Xj = −
(
∂jUj(~Xj) + 〈 ∂jUj(~X0, ~Xj) 〉Ψ

)
− αj
~̇Xj

αj
def
=
〈Wj 〉Ψ − U̇j

2Kj
, Wj

def
= − ~̇Xj · ~∂jU0j(~X0, ~Xj)

(〈 · 〉Ψ ≡ 〈Ψ| · |Ψ〉). Evolution keepsKj ≡
1
2
~̇X

2

j exactly constant
(defining therm. temp.Tj via Kj =

3
2kBTjNj, as classical case).

NOT a time dep. Schrödinger eq.:essential interaction
syst-thermos. This is aclassical Dynamical system.

Divergence: σ(x) =
∑

j
Qj

kBTj
+

U̇1
kBT1

(same as classical)

Equations are reversible and chaotic⇒ CH⇒ SRB+ FT
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Consistency check: system interacting with a single thermostat
the SRB distribution should be equivalent to the canonical
distribution.True in classical case).

Candidate forµ: probability proportional todΨ d~X1 d~̇X1 times

∞∑

n=1

e−βEn(~X1)δ(Ψ − Ψn(~X1) eiϕn) dϕn δ(~̇X
2
1 − 2K1)

⇒ (??)expectation ofO is a Gibbs state of therm. equil. with a

special kind (random~X1,
~̇X1) of b.c. and temperatureT1.

〈O 〉µ = Z−1
∫ ∞∑

n=1
e−βEn(~X1)〈Ψn(~X1)|O|Ψn(~X1)〉δ(~̇X2

1 − 2K1)d~X1~̇X1

But not invariant under evolution: difficult to exhibit explicitly
an invariant distribution (why should it be easy?Aesopus)
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Nevertheless ifadiabatic approximation (i.e’ the classical
motion of the thermostat particles is on a time scale much
slower than the quantum evolution of the system).

Eigenstates at time 0 evolve following the variations of
HamiltonianH(~X(t)) due to thermostats particles motion,
without changing quantum numbersand can check

µ is stationary ifβ is chosen such thatβ = 3N1
2K1
≡ (kBT1)−1 the

distribution〈 · 〉µ is stationary.

Conjecture: true SRB isalso equivalent to Gibbs at temp.
(kBβ)−1
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Under time evolution a timet > 0 infinitesimal:

~X1 → ~X1 + t~̇X1 + O(t2)

En(~X1) → En + t en + O(t2) with

en
def
= 〈 ~̇X1 · ~∂~X1

U01 〉Ψn
+ t~̇X1 · ~∂~X1

U1 = −t (Q1 + U̇1)

e−βEn(~X1) → e−βten

thermostat phase space contracts byetσ ≡ et
3N1en
2K1

Thus if β is chosen such that β = 3N1
2K1
≡ (kBT1)−1 the distribution

〈 · 〉µ is stationary.

⇒ possibility of defining the temperaturevia the FT ifQ is
measurable orQ if T is measurable (originally suggested by
Cugliandolo and Kurchan as a possible application of FT)
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Consider another non equilibrium case in which CH does not
hold exactly. In non equilibriumdissipationoften leads to
trivial results.

So we ask if at least in a simple case it would be possible to
checkthat the system at least develops a strange attractor.

And can the attractor be described in detail? and proved to be
non trivial? E.g. not a periodic orbit (either with a period close
to an unperturbed one (resonance) or with a period of the
external forcing (synchronization)? as it often happens.

Study a system which is “chaotic” but does not satisfy CH
assumptions

Natural case: subject a system for which the CH hypotheses
wouldhold to a periodic forcing.

MAQFTQTT 25/4/2012 9



In absence of forcingno quasi periodicmotions andfew
periodicones: finitely many with period less than anyT < ∞.

Sx
x

www

x1

x2

Sx =

(
1 1
1 0

) (
x1

x2

)

ẋ = δ1(z)(Sx − x)

ẇ = 1 ż = 1

z

z − clock

Look at Poincaré’s mapS at t = 2πn

x′ = Sx, w′ = w

planesw = const are invariant. What about perturbations?
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Sεx
x

www

x1

x2

ẋ =δ1(z)(Sx − x) + εfε(x,w, z)

ẇ =1+ εgε(x,w, z)

ż =1

z

z − clock

Look at Poincaré’s mapS at t = n

x′ = Sx + εf ε(x,w), w′ = w + εgε(x,w)

1gg a) volume preserving (ifε = 0 theS is not even ergodic,&
has one“central” Lyapunov exponentzero.
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Theor.: Near (in C2) f = g = 0 ∃ open set of perturb. with Sε

Sx
x

www

x1

x2

(1) Ergodic

(2) Central Lyap. exp.ℓε > 0

(3) ∃ S-invariant foliation
Λ into C1-smooth linesl

(4) ∃k andE of full vol. s.t.
E ∩ ℓ is exactlyk < ∞ pts(!)

[Conjectures:k > 1 & k = 1]
SW 1999, RW 2001

S−1x

No synchronization: in (x,w, z) the planesw = const are
invariant under the P.-map butvolatilizeunder perturbation

b) Is synch. possible in dissipation? which attractor structure?
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Three possibilities?

1) Simplest possibility attractor=“periodic orbit” .

2) Attractor= “pathological ” (but with Hausdorff dim. < 3).

3) A periodic strange attractor: dissipation stabilizes a single
one among the unperturbed invariant surfacesw = const

ẋ =δ1(z)(Sx − x) + εfε(x,w, z)

ẇ =1+ εgε(x,w, z), ż = 1
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Casef ≡ 0

ẋ =δ1(z)(Sx − x)

ẇ =1+ εgε(x,w, z), ż = 1

Simulations can be consistent with 2) or 3). “Naivest” case

f = 0, g(x,w, z) = (sin(z − w) + sin(x1 + z + w))

(first studied) immediately shows an instance of (3). Special:

average perturb.g0(x,w)
def
=

∫ 2π

0
g(x,w + t, t)

dt
2π

= sinw

av. compressiong1(x,w)
def
=

∫ 2π

0

∂

∂w
g(x,w + t, t)

dt
2π
= cosw

Notice that in exampleg0(x, π) = 0, g1(x, π) = Γ < 0,∀x.
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Result: If ∃ w0 such that g0(x,w0) = 0, g1(x,w0) = Γ < 0, ∀x,
then∃ ε0 for 0 < ε < ε0

(1) ∃ attractorw(x) = w0 + Uε(x)

(2) Uε(x) is h-Hölder continuous

h ≥ |Γ|

logλ+
ε + O(ε2)

(3) Uε is analytic inε inD
O

ε-plane

D

ε = 0 ε , 0 →
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Conjectures

(a’)
∫ 2π

0
dt g(x,w0 + t, t) = g̃(x), with g̃(x) with 0 average,

(b’)
∫ 2π

0
dt ∂wg(x,w0 + t, t) = g̃1(x), with g̃1(x) with < 0 average.
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