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Non Equilibrium: lack of a model playing role of Ising in 2D.
Microscopic theory of heat conductioopen

Ruelle’s:NE Statistics= statistics of almost all initial data
chosen with the Liouville’s distr.

Non equilibrium— ma = —4V(d) + F + (B, d)p.

Liouville th. invalid; phase space contracts (in average)tate
has the interpretation @ntropy productiomr(g(n), p(n)) rate
Are there any exact results at all?

If the system is “very chaotic” yes:luctuation theorerfor
stationary statelf s= 153 w

Prob(se (x,x + ¢)) T2 Tx(r)
Prob(se (-x—&,—X))
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Prob(se (x, x + €)) Toeoo Tx(a)
Prob(se (-x—¢&,-X))
No free parameters. Applications?

Cohen-G: Chaotic hypothesis:a system is chaotic then it can
be supposed to be so “as much as possjhble”it is “Anosov”

This allows to make use of the FT and‘test it”.
Of course you do not “test” theorems!

Rather one tests the chaotic hypothesis which takes thefole
the ergodic hyothesis in non equilibrium: more properly cal
Fluctuation relation
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In non equilibriumdissipationis essential and quest for a model
that can play the role of Isinggmains

Furthermore dissipation often leads to rathiefial results

So we ask if at least in a simple case it would be possible to
checkthat the system at least develops a strange attractor.

And can the attractor be described in detail? and proved to be
non trivial? E.g. not a periodic orbit (either with a period close
to an unperturbed one (resonance) or with a period of the
external forcing (synchronization)? as it often happens in
presence of dissipation.
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Periodically forcedchaotic systemand chaotic hypothesis
Study a system which is “chaotic” but does not satisfy FT
assumptions

A natural case is obtained subjecting a system for which The F
hypothesesvould hold to a periodic forcing.

1) volume preserving (“no dissipation”)
2) dissipative

In absence of forcingo quasi periodimotions andew
periodicones: finitely many with period less than ahy co.

So in this case only “extrinsic” resonances properly castexi
i.e. synchronizatiomwith externally imposed periodic forces.
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X = 61(2)(SX - X)

w=1 z=1
z

z— clock

Look at Poincaré’s mas att = 27n

X = &,

W =w

planesw = const are invariant. What about perturbations?
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X =61(2)(SX = X) + &f (X, w, 2)
w =1+ £9.(X, W, 2)

\ o
w
o R z
, X z- clock

,’SaX

N~

L L ——

gxa1

Look at Poincaré’s mas att = n

X = X+ &f (x, W), W =W+ &0,(X, W)

a) volume preserving (i = 0 theS is not even ergodic has
one“central” Lyapunov exponergera
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Theor.: Near (in C?) f = g = 03 open set of perturb. with S,

(1) Ergodic

(2) Central Lyap. expt, > 0
(3) A S-invariant foliation

A into Ct-smooth lined

L - (4) Ik andE of full vol. s.t.

1
‘.SL X/ % E N ¢is exactlyk < oo pts(!)

A\

w §<
:X.é

,’/ X [Conjecturesk > 1 & k= 1]

X1 SW 1999, RW 2001

No synchronization: inX, w, z) the planesv = const are
invariant under the P.-map bublatilize under perturbation

b) Is synch. possible in dissipation? which attractor $tme?
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Three possibilities?
1) Simplest possibility attractetperiodic orbit” .
2) Attractor= “pathological ” (but with Hausddf dim. < 3).

3) A periodic strange attractodissipation stabilizes a single
one among the unperturbed invariant surfages const

X =01(2)(SX = X) + &f.(x, W, 2)
w =1+ &g.(X, W, 2), z=1
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Casef =0

X =01(2)(X-X)
w =1+ &9.(X, W, 2), z=1
Simulations can be consistent with 2) or 3). “Naivest” case

f=0, a(x,w, 2) = (Sin(z—w) + sin(X, + z+ w))
(first studied) immediately shows an instance of (3). Specia
w [ dt .
average perturbgo(x, w) = a(x, w+t, t)g = sinw
21
. def dt
av. compressiorg; (x, w) = f 8—Wg(x,w+t, t)Z = COSW

0
Notice that in examplgo(x,7) = 0, g1(X,7) =T < 0, ¥x.
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Result: If 3 wp such that go(x, Wo) = 0, g1(X, W) =T < 0, VX,

thendgy for 0 < e < g9

(1) A attractorw(x) = Wy + U.(X)

-plane
=P (2) U.(X) is h-Holder continuous
0 h > IOgL £+ 0(&?)
D (3) U, is analytic ing in O

e=0
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Conjectures
(@) [ dtg(x wo + t,t) = G(¥), with G(x) with O average,
(b)) f02” dt 0.g(x, Wo + t, t) = 01(X), withg;(X) with < O average.

Basics: write equations and look ok, (x):
(x(t), w(t),t) = (X, w + t + u(x, t), 1), t € (0, 2]

X =6(2)(SX - X)
: u(x, 0) =U(x)
v;ii +£0:(X, W, 2) U(x, 27) U ()

Taylor expansion i to second order (noteinstead ofc)
u(x t) = eg(x, w+ t + u(x, t), t)
=eg(X, Wo + t,t) + 1 0wg(X, Wo + £, ) U(X, t) + & G(X, t, u(X, t))
Solved “as a linear equation” in terms‘@f/ronskian”
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Power series ia: check convergence radius fief < const /i
henceu = ¢ is possible. Actually convergence for

e =pe’, if p < const (cost)?
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Quasi integrable systems resonances

H(A, @) = %3\2+ef(3\,&)

Representation of phase space in termérotators:
a@=(at,....,a) €T, A= (Ar,....A)
Unperturbed system» haveall possiblespectraw:

- -

A=A, a=ap+dt, &= (wi,...,w)
in particularw; rationally dependerds fora®:

@ = (9,...,09,0,0,...)
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@° = (o, ...,w),0,0,...): resonant motions
More generally fesonances with rotatian® are”

{'K:/K”X(‘Z) JeT!, 0 <¢

d=(+YW).8+Y )
(X, Y = smooth), the motionsy — ¢ + @° solve eq. of
motion.

Resonances exist émall) under “mild conditionshon trivial
i.e. spectrad?, ..., 9,0,0,...) are possible (KAM).

Examplet’ = 2: @ g (a1, 8,0@") € T2 x T2,

daldaz

f(@) = f(a1. a, @), f(@) = f (27)?
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X.(), Y.() analytic ine, ¢ existwith domain including

A

complex (@) = dondang (). ap, @
e—plane ( ) f (2n)? ( b )

of@"°) =0, 0%(@"°) <0

1&3° - ¥ > C|¥|™7, “Diophantine”

“Intrinsic” Resonancest reals (Gentile-G)

{/3= Ro +X()

o g s WET <
@= @+ YY), 8+ YY)
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Other kinds of resonances are “extrinsic” res. or exhibit
synchronizatiorproper:

@=A
A = —£0;V(@) + eF ()

9 motion with spectruna ? ¢ = 2 (Corsi-Gentile). Friction?
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