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Non Equilibrium: lack of a model playing role of Ising in 2D.

Microscopic theory of heat conduction:open

Ruelle’s:NE Statistics= statistics of almost all initial data
chosen with the Liouville’s distr.

Non equilibrium→ m~a = −~∂V(~q) + ~F + α(~p, ~q)~p.

Liouville th. invalid; phase space contracts (in average):its rate
has the interpretation ofentropy productionσ(~q(n), ~p(n)) rate

Are there any exact results at all?

If the system is “very chaotic” yes:Fluctuation theoremfor

stationary state. If s
def
= 1

T

∑T
0
σ(~q(n),~p(n))
〈σ 〉

Prob(s ∈ (x, x + ε))
Prob(s ∈ (−x − ε,−x))

T→∞
= e−T x 〈σ 〉
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Prob(s ∈ (x, x + ε))
Prob(s ∈ (−x − ε,−x))

T→∞
= e−T x 〈σ 〉

No free parameters. Applications?

Cohen-G: Chaotic hypothesis:If a system is chaotic then it can
be supposed to be so “as much as possible”, i.e. it is “Anosov”

This allows to make use of the FT and to“test it”.

Of course you do not “test” theorems!

Rather one tests the chaotic hypothesis which takes the roleof
the ergodic hyothesis in non equilibrium: more properly call
Fluctuation relation.
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In non equilibriumdissipationis essential and quest for a model
that can play the role of Isingremains.

Furthermore dissipation often leads to rathertrivial results.

So we ask if at least in a simple case it would be possible to
checkthat the system at least develops a strange attractor.

And can the attractor be described in detail? and proved to be
non trivial? E.g. not a periodic orbit (either with a period close
to an unperturbed one (resonance) or with a period of the
external forcing (synchronization)? as it often happens in
presence of dissipation.
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Periodically forcedchaotic systemsand chaotic hypothesis

Study a system which is “chaotic” but does not satisfy FT
assumptions

A natural case is obtained subjecting a system for which the FT
hypotheseswouldhold to a periodic forcing.

1) volume preserving (“no dissipation”)
2) dissipative

In absence of forcingno quasi periodicmotions andfew
periodicones: finitely many with period less than anyT < ∞.

So in this case only “extrinsic” resonances properly can exist:
i.e. synchronizationwith externally imposed periodic forces.
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ẋ = δ1(z)(Sx − x)

ẇ = 1 ż = 1

z

z − clock

Look at Poincaré’s mapS at t = 2πn

x′ = Sx, w′ = w

planesw = const are invariant. What about perturbations?
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ẋ =δ1(z)(Sx − x) + εfε(x,w, z)

ẇ =1+ εgε(x,w, z)

ż =1

z

z − clock

Look at Poincaré’s mapS at t = n

x′ = Sx + εf ε(x,w), w′ = w + εgε(x,w)

a) volume preserving (ifε = 0 theS is not even ergodic,& has
one“central” Lyapunov exponentzero.
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Theor.: Near (in C2) f = g = 0 ∃ open set of perturb. with Sε

Sx
x

www

x1

x2

(1) Ergodic

(2) Central Lyap. exp.ℓε > 0

(3) ∃ S-invariant foliation
Λ into C1-smooth linesl

(4) ∃k andE of full vol. s.t.
E ∩ ℓ is exactlyk < ∞ pts(!)

[Conjectures:k > 1 & k = 1]
SW 1999, RW 2001

S−1x

No synchronization: in (x,w, z) the planesw = const are
invariant under the P.-map butvolatilizeunder perturbation

b) Is synch. possible in dissipation? which attractor structure?
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Three possibilities?

1) Simplest possibility attractor=“periodic orbit” .

2) Attractor= “pathological ” (but with Hausdorff dim. < 3).

3) A periodic strange attractor: dissipation stabilizes a single
one among the unperturbed invariant surfacesw = const

ẋ =δ1(z)(Sx − x) + εfε(x,w, z)

ẇ =1+ εgε(x,w, z), ż = 1
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Casef ≡ 0

ẋ =δ1(z)(Sx − x)

ẇ =1+ εgε(x,w, z), ż = 1

Simulations can be consistent with 2) or 3). “Naivest” case

f = 0, g(x,w, z) = (sin(z − w) + sin(x1 + z + w))

(first studied) immediately shows an instance of (3). Special:

average perturb.g0(x,w)
def
=

∫ 2π

0
g(x,w + t, t)

dt
2π

= sinw

av. compressiong1(x,w)
def
=

∫ 2π

0

∂

∂w
g(x,w + t, t)

dt
2π
= cosw

Notice that in exampleg0(x, π) = 0, g1(x, π) = Γ < 0,∀x.
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Result: If ∃ w0 such that g0(x,w0) = 0, g1(x,w0) = Γ < 0, ∀x,
then∃ ε0 for 0 < ε < ε0

(1) ∃ attractorw(x) = w0 + Uε(x)

(2) Uε(x) is h-Hölder continuous

h ≥ |Γ|
logλ+

ε + O(ε2)

(3) Uε is analytic inε inD
O

ε-plane

D

ε = 0 ε , 0 →
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Conjectures

(a’)
∫ 2π

0
dt g(x,w0 + t, t) = g̃(x), with g̃(x) with 0 average,

(b’)
∫ 2π

0
dt ∂wg(x,w0 + t, t) = g̃1(x), with g̃1(x) with < 0 average.

Basics: write equations and look forUε(x):

(x(t),w(t), t) = (x,w + t + u(x, t), t), t ∈ (0, 2π]

ẋ =δ(z)(Sx − x)

ẇ =1+ εgε(x,w, z)

ż =1

u(x, 0) =U(x)

u(x, 2π) =U(Sx)

Taylor expansion inu to second order (noteµ instead ofε)

u̇(x, t) = εg(x,w + t + u(x, t), t)

≡εg(x,w0 + t, t) + µ ∂wg(x,w0 + t, t) u(x, t) + εG(x, t, u(x, t))

Solved “as a linear equation” in terms of“Wronskian”
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Power series inε: check convergence radius for|ε| < const
√
µ

henceµ = ε is possible. Actually convergence for

ε = ρeiθ, if ρ < const (cosθ)2
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Quasi integrable systems resonances

H(~A, ~α) =
1
2
~A2 + ef (~A, ~α)

. . . . . .α1
α2 αℓ

A1 A2

Aℓ

Representation of phase space in terms ofℓ rotators:
~α = (α1, . . . , αℓ) ∈ Tℓ, ~A = (A1, . . . ,Aℓ)
Unperturbed system⇒ haveall possiblespectra~ω:

~A = ~A0, ~α = ~α0 + ~ωt, ~ω = (ω1, . . . , ωℓ)

in particularωj rationally dependentas for~ω0:

~ω0 = (ω0
1, . . . , ω

0
ℓ′ , 0, 0, . . .)
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~ω0 = (ω0
1, . . . , ω

0
ℓ′, 0, 0, . . .): resonant motions.

More generally “resonances with rotation~ω0 are”


~A = ~A0 + ~X(~ψ)

~α = (~ψ + ~Y(~ψ), ~a′0 + ~Y
′(~ψ)

, ~ψ ∈ Tℓ′ , ℓ′ < ℓ

(~X, ~Y = smooth), the motions~ψ→ ~ψ + ~ω0t solve eq. of
motion.

Resonances exist (ε small) under “mild conditions”non trivial

i.e. spectra (ω0
1, . . . , ω

0
ℓ′ , 0, 0, . . .) are possible (KAM).

Exampleℓ′ = 2: ~α
def
= (α1, a2, ~α

′) ∈ T2 × Tℓ−2,

f (~α) ≡ f (α1, a2, ~α
′), f (~α′) =

∫
dα1dα2

(2π)2
f (α1, α2, ~α

′)
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Xε(~ψ), Yε(~ψ) analytic inε, ~ψ existwith domain including

complex
ε−plane

f (~α′) =
∫

dα1dα2
(2π)2 f (α1, α2, ~α

′)

∂f (~α ′0) = ~0, ∂2f (~α ′0) < 0

|~ω0 · ~ν| > C|~ν|−τ, “Diophantine”

“Intrinsic” Resonancesat realε (Gentile-G)

~A = ~A0 + ~X(~ψ)

~α = (~ψ + ~Y(~ψ), ~a ′0 + ~Y
′(~ψ)

, ~ψ ∈ Tℓ′ , ℓ′ < ℓ
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Other kinds of resonances are “extrinsic” res. or exhibit
synchronizationproper:


~̇α = ~A

~̇A = −ε∂~αV(~α) + ε~F(~ωt)

∃ motion with spectrum~ω ? ℓ = 2 (Corsi-Gentile). Friction?
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