
Formal perturbation analysis of a
non equilibrium stationary state

by A.Iacobucci, S.Olla, G.G.

Non-equilibrium: statistics is often shown to exist.

(By) “compactness methods”: veryunsatisfactory.

Dissatisfaction: when physical quantities are needed “no
answers”.

E.g. for hard spheres systems continuity of correlation of a
stationarynonequilibriumdistibution is not known⇒ no
answer to simple questions like〈∂qρ(q−q′)〉.
Particularly valuable are therefore exactly soluble models.

Unfortunately they are very few , most involve stochastic forces.
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Even so the study is very difficult. Here the question of
“computing” correlations for a “trivial” system. TheN = 1 case

. . . . . .
q1

q2 qN

p1 p2

pN
The equation of motion is the stochastic equation

q̇ =
p
J

ṗ =−∂U − τ − ξ
J

p+

√

2ξ
J

ẇ

ẇ w.n. of width( J
β0dt)

1
2 ,

U =−gV cos(q) conservative force, τ torque, ξ friction, J
inertia

β0 inverse temperature

Problem: find the stationary state distribution
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It is hard to believe that this in not known???.

F(p,q)dpdq: the stochastic equation yields the PDEL ∗F = 0

L
∗F =−

{(p
J

∂qF(q,p)− (∂qU(q)+ τ)∂pF(q,p)
)

−ξ
(

β−1
0 ∂ 2

p F(q,p)+
1
J

∂p(pF(q,p))
)}



It is hard to believe that this in not known???.

F(p,q)dpdq: the stochastic equation yields the PDEL ∗F = 0

L
∗F =−

{(p
J

∂qF(q,p)− (∂qU(q)+ τ)∂pF(q,p)
)

−ξ
(

β−1
0 ∂ 2

p F(q,p)+
1
J

∂p(pF(q,p))
)}

General results:most interesting: simulations, ILOS1: [1]
(1) Thereexistsasmoothsolution (Hormander)
(2) is exponentiallyapproached by initialδ (Mattingly-Stuart)

(3) it is positive F(q,p) = e−
β
2J p2

ρ(p,q)√
2Jβ−1

= G(p)ρ(p,q) (MS)

(4)
∫

G(p)ρ(p,q)2 < ∞, (???)



It is hard to believe that this in not known???.
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∗F =−
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General results:most interesting: simulations, ILOS1: [1]
(1) Thereexistsasmoothsolution (Hormander)
(2) is exponentiallyapproached by initialδ (Mattingly-Stuart)

(3) it is positive: e−
β
2J p2

ρ(p,q)√
2Jβ−1

= G(p)ρ(p,q)

(4)
∫

G(p)ρ(p,q)2 < ∞ (???)

(5)⇒ if : pn :=
(

Jβ−1

2

)
n
2
Hn(

p√
2Jβ−1

) (Wick,Hermite poly.)

ρ(p,q) =G(p)(ρ0(q)+ρ1(q)p+ρ2(q) : p2 :+ρ3(q) : p3 :+ . . .)

Problem: Find the expansion ing of ρn(q) (why care?)
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By algebraL ∗F = 0 becomes:n ≥ 0 (ρ<0 ≡ 0)

nβ−1∂ρn(q)+
[1

J
∂ρn−2(q)+

β
J
(∂U(q)+ τ)ρn−2(q)

+(n−1)
ξ
J

ρn−1(q)
]

= 0

Messy! compute theρ [1]
n (q) and go dimensionless with

σn(q)
def
= ρn(q)ξ nn!, η def

= βξ 2/J,βτ, βV

(1) Recursion islinear: take the F.T.σn,k

(2) Recursion is second degree:takeZn,k
def
=

( σn,k

σn−1,k(q)

)

for k , 0 Fourier modes of theσ ′s
(3) un = average ofσn; then(r = 1)

Z[r]
n,k =Mn,kZ

[r]
n−1,k +X[r]

n,k, Z[r]
2,k = Y[r]

k

u[r]n =−βτu[r]n−1+ v[r]n , u[r]2 = u[r]
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This can be written explicitly: the first order forn > 2

Zn,k =Mn,kZn−1,k +Xn,k, Z[r]
2,k = Y[r]

k , X[1]
n,k = un|2〉

un =−βτun−1, u2 = (−βτ)2

soun = (−βτ)n, and with initial data atn = 2. Setm ≡ n−1

ak
def
= (1− i

βτ
k
)i, |1〉def

=

(

1
0

)

, |2〉def
=

(

0
1

)

Mn,k
def
=

(m
k iη imakη
1 0

)

, M−1
n,k

def
=

(

0 1
1

imakη − 1
k ak

)

,

Y1
def
=

(

−ηakσ0,1−ηβV
)

|1〉def
= σ0,1

(

y[1]k

0

)

−ηβV|1〉

Conclusion: σ0,k determines everything at given order: keeping
in mind thatat orderr it must be|k| ≤ r.

So infinitely many solutions!howeverρ(q,p) must beL2:
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Required:|σn(q)| ≤ εn√
n!

. Formally

Zn = λM−1
n+1 . . .M

−1
N ....+

∞

∑
h=n+1

M−1
n+1 . . .M

−1
h Xh

A cut-off version is

Zn(N) = λλNM−1
n+1 . . .M

−1
N |2〉+

N−n

∑
h=n+1

M−1
n+1 . . .M

−1
h Xh

Need a theorem: for|βτ|,η−1 small enough

Theorem 1: Given k, if η is large enough there is a sequence
Λk(n1,N) such that for all n1 ≥ 2 and all k , 0 the

ζk(n1,N)
def
=

(

ζk(n1,N)1

1

)

= Λk(n1,N)M−1
n1+1 . . .M

−1
N |2〉 (0.1)

is s.t. |ζk(n1,N)1| ≤ 1 and ζk(n1)
def
= limN→∞ ζk(n1,N) exists.
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Corollary: A solution, unique exponentially, is

Zn =λζn +ξn, n ≥ 2, where

ζn =Mn · · ·M3ζ (2), ξn =
∞

∑
h=n+1

−βVηM−1
n+1 . . .M

−1
h X[1]

k

|ζn| ≤B |1− iβτ|n, |Zn| ≤ BβV|1− iβτ|n

Onceζ (2) = limN→∞ M−1
3 · · ·M−1

N |2〉 known impose initial data

Z2 ≡ (σ [1]
0,1y[1]1 −ηβV) |1〉= λζ2+ξ2

(recally[1] =−η(1+ βτ
i )) or

σ [1]
0,1y[1]1 −λζ (2)1 = (ξ (2)1+ηβV)

−λ = ξ (2)2

determines the only unknownσ [1]
0,1.



Hence thekey is the theorem

Once more this is a problem on aIsing systemcontrolled byγ

γ =−4iakk2

mη
, λm,k,±

def
= − 1± √

1+ γ
2k ak

and spectral decomposition ofM−1
n :

M−1
n,k = ∑

σ=±1
λn,k,σ

|vn,σ 〉〈wn,σ |
〈wn,σ |vn,σ 〉

,

|vn,σ 〉= λ−1
n,σ

(

1
λn,σ

)

,

〈wn,σ |=
(

εn,λn,σ

)

, εn =
γ

4k2a2
k

The Ising model arises becauseM−1
n · · ·M−1

N |2〉 is
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writing explicitly the matrix productM−1
n · · ·M−1

N |2〉 as

∑
σ3,...,σN

|v3,σ3〉 ·
( N

∏
j=3

λj,σj

) N

∏
j=3

〈wj,σj|vj+1,σj+1〉
〈wj,σj|vj,σj〉

“expectation” of|v3,σ3〉 in a Gibbs state.Gibbs factor?

Spin configuration =intervals of− separated+, then

ΛN

p

∏
i=1

IJ is the Gibbs weight

ρ(J) def
=

∑p≥1 ∑∗
J1<...<Jp

(

∏p
s=1 IJs

)

Ω2(N)

P−
def
= ∑

{3}∈J

ρ(J), ζ (2) = λ−1
3,−P−+λ−1

3,+P+
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Λ[2]
N

def
=

( N

∏
j=3

λj,+

)( N

∏
j=3

〈wj,+|vj+1,+〉
〈wj,+|vj,+〉

)

IJ
def
=

( k′

∏
j=k

λj,−
λj,+

)( k′

∏
j=k

〈wj,−|vj+1,−〉
〈wj,−|vj,−〉

〈wj,+|vj,+〉
〈wj,+|vj+1,+〉

)

· 〈wk−1,+|vk,−〉
〈wk−1,+|vk,+〉

〈wk′,−|vk′+1,+〉
〈wk′,+|vk′+1,+〉

〈wk′,+|vk′,+〉
〈wk′,−|vk′,−〉

|IJ| ≤ WJ
def
=

(

√
2

η

)|J|(
∏
j∈J

1
j−1

) 2k4

η2(k′−1)3

Non transl. inv. but very small already forJ close to the origin.

Hence theP± can be computed as convergent series inIJ ’s as
well as the partition functionexp(ΩN) which amits a limit as
N → ∞ (no logarithm necessary).
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Theorem: Fixed r > 0 the equation L ∗F(p,q) = 0

(1) admits (at most) a 1-que Cr (in g,p,q) solution
nonnegative and in L1(dpdq) for τ,g,ξ−1 small.

(2) The coefficients F[r](p,q) of its Taylor expansion
at g = 0 are uniquely determined, analytic in q,p,

(3) are explicitly computable.

Conjecture:r = ∞ andF analytic ing.



The idea should be applicable to the evaluation of the Lyapunov
exponents of infinite products of matrices close to a hyperbolic
matrix.

In particular could yield analyticity of the leading exponent in
terms of parameters defining the matrices (a very special case of
a result by Ruelle).

A. Iacobucci, F. Legoll, S. Olla, and G. Stoltz.
Negative thermal conductivity of chains of rotors with
mechanical forcing.
Physical Review E, 84:061108 +6, 2011.
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