
Hyperbolic systems and fluctuation theorems

Question: Is Thermodynamics extendible to nonequilibrium
phenomena?

Minimal program: extension to stationary states

This means asking more than whether
Temperature,Entropy, Energy ... can be defined.

First problem is that to keep a system stationary out of
equil. dissipation is necessary.

Dissipation requires that the system interacts with
thermostats.

Should be modeled fundamentally as infinite systems

capable of sustaining e.g. a temperature gradient.

This implies that the ambient space has to be 3 dimensional
(no harmonic function exists if ≤ 2 in infinite space).
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Major advance has been the proposal of treating the
thermostats phenomenologically (Hoover,Evans ’980s).
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∑
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Prelim.: does it matter? if d ≤ 3 & smooth pair interactions

Theorem: a.a. data ~X chosen with a distribution in which

the thermostats are in a Gibbs state with temperatures Ti

evolved into ~X(t)[n]by letting move only particles in a ball of

radius r2n with or without ai ~̇Xi converge to the SAME ~X∞,

exponentially fast at fixed distance from 0. (Presutti, GG)
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Open: does the evolution lead to a stationary distribution?
only partial unsatisf. answers for finite thermostats.

NEQ Thermodynamics starting point is the Ruelle’s
principle for fluids: as in equil. ∃ a single natural statistics
for stationary states: because dynamic is hyperbolic.

Chaotic hypothesis: (Cohen, G) Motions on the

attracting set of a chaotic system can be regarded as

motions of a smooth transitive reversible hyperbolic system.

Mathematical meaning: There exist reversible Markovian
partitions P = (P1, . . . , Pn). Usable to prove general
properties: none proposed since Onsager reciprocity.

History of x on P, ~σ = {σi}∞i=0 s.t. Six ∈ Pσi
defines an

adapted coordinate for x determining x with exponential
precision and makes dynamics universal
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FT: The stationary distr. of the random variable

p =
1

τ

τ
∑

k=0

s(Sk ~X)

〈 s 〉srb
, P rob(p ∈ ∆) = eτ maxp∈∆ ζ(p)+o(τ)

then Prob(p)
Prob(−p)

= e−pτ〈 s 〉: more precisely exact symmetry

ζ(−p) = ζ(p)− p 〈 s 〉srb

Importance: s( ~X), hence p has a physical interpretation:
i.e. it is the entropy increase of the thermostats.

Experimentally accessible and the Fluctuation Relation is
model independent; possibly first non trivial general noneq.
property after Onsager reciprocity (OR).

Time reversal leads to many other FRs.

If F1( ~X), . . . , Fn( ~X) are n TR-odd obs., (Fi(Ix) = −Fi(x)),
given n patterns ϕ1(t), . . . , ϕn(t) then
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If F1( ~X), . . . , Fn( ~X) are n TR-odd obs. (Fi(Ix) = −Fi(x)),
given n patterns ϕ1(t), . . . , ϕn(t) then

Prob({Fi(S
k ~X)

ε
=ϕi(k)}τk=τ , p)

Prob({Fi(Sk ~X)
ε
=− ϕi(−k)}τk=τ ,−p)

=τ→∞ ep τ 〈 s 〉

again no free parameters (and independent on Fi).

“All needed to reverse time is to reverse entropy

production”. also ⇒ OR & Green-Kubo.

How the CH can be viewed from Physics? it allows to define
precisely coarse graining, to count phase space points, to
better understand of entropy and finally to a “natural
proposal” of quantitative meas. of quasi-static processes.

Coarse graining on a MP P = {P1, P2, . . . , Ps};

MP → code by {σi}∞i=−∞ s.t. x←→{σi}∞i=−∞ s.t. Six ∈ Pσi

Refine P → Pn s.t. “all” F are constants on sets of Pn
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Sets in Pn = {P (σ−n, . . . σn)
def
= ∩n−n S

−iPσi
}~σ

The Pσ−n,...σn
≡ P (~σ) will be called coarse grained cells.

The SRB is a distribution with weight w(~σ) for P (~σ) and
admits an explicit formula

w(~σ) = e−Λu,n(~σ) ⇒ µSRB(P (~σ)) =
e−Λu,n(~σ)

∑

~σ′ e−Λu,n(~σ′)

Interpretation (1
2
-heuristic): in simulations phase space is

discrete and evolution is a map on a finite space.

Discard nonrecurrent points (i.e. transient, present in any
code): remain those on the “attractor” A.

Thier number in A∩ P (~σ) is the fraction of the total N

N (~σ) = NµSRB(P (~σ))

and evolution is a one cycle permutation of A, “ergodicity”
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This unifies equilibrium and nonequilibrium:
In the first case all points are recurrent (ergodicity) and

w(~σ) = volume(P (~σ)

In both cases the stationary dist. is equal weight of the
phase space points, i.e. SRB ⊃ Boltzmann.

It becomes possible therefore to count the number of
points: is it nonequilibrium Entropy ??

(My) answer NO!: both in equilibrium and nonequilibrium
the count is ambiguous: it depends on the precision “ε” of
discretization.

BUT equil. ambiguity = an additive constant (“3N log ~”)
independent on the state.

This is not the case out of equilibrium: still ambiguous by
additive constant which is state dependent (in example
(GG) depends on density and temp. as ε changes).
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Neverthesless SP,ε = kB logNP,A, ε is maximal among all
distributions on the attractor.

Simply as it corresponds to equal weights: hence it can play
the role of Lyapunov function measuring the distance of an
evolving distribution to the SRB; just as in equilibrium !!

What about processes? transforming µini into another
µfin? under external parameters Φ(t) changes of (forces,
thermostats temperatures, volume, &tc) as 0 ≤ t ≤ +∞.

At 0 < t <∞ time evolution x = ( ~̇X, ~X)→ x(t) = S0,tx is
non autonomous evolution. Initial state evolves into µt

〈F 〉µt
=

∫

F(t)

µt(dx)F (x)
def
=

∫

F(0)

µ0(dx)F (S−1
0,t x)

Imagine Φ(t) stepping from Φ(0) to Φ(∞). Clearly

〈F 〉µsrb(t)
6=〈F 〉µt
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In the previous model phase space contraction is

s( ~̇X, ~X) =
∑

a

Q̇a

kBTa

−N
V̇t

Vt

−
∑

a

U̇a

kBTa

which dimensionally is a time−1.

It is natural (GG) to introduce the quantity

t−1
irreversibiiy =

1

N2

∫ +∞

0

(

〈 s(t) 〉µt
− 〈 s(t) 〉SRB,t

)2

dt

By Chaotic Hypothesis µt evolve to µSRB,t exponentially
fast under the “frozen evolution”.

Therefore the integral will converge.

The slower the evolution the smaller the integral: it will
→ 0 as evolution slows down:

tirreversibility → +∞
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Interpretation:

tirreversibility is the time necessary to realize that the process
is irreversible

This makes sense both in equilibrium thermodynamics and
out of equilibrium

Example: Joule-Thomson: (gas expansion in a piston)

S = section; Ht = H0 + w t distance base-moving lid;

Ω = S Ht increases at rate N w
Ht
.

Hence 〈 st 〉t is −N
w
Ht
, while ssrbt ≡ 0.

T = L
w
process duration (to increase height by L)

t−1
irreversibility = N−2

∫ T

0

N2
( w

Ht

)2
dt−−−→

T→∞
w

L

H0(H0 + L)

immediately, if w =∞, irreversibility becomes apparent
never, if w → 0: quasi static ≡ ∞-slow.
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In any event “quasi staticity” becomes quantitative notion

In the latter example it is customary to estimate the degree
of irreversibility at the lift of the lid by the thermodynamic

equilibrium entropy change between initial and final states.

It would of course be interesting to have a general
definition of entropy of a non stationary state (like the
states µt at times (t ∈ (0,∞) in the example just discussed)
to allow connecting irreversibility time scale to
thermodynamic entropy variation in processes leading from
an initial equilibrium state to a final equilibrium state.

It is also not inconceivable a quantitative study of the
irreversibiliy of attempts at realizing Carnot cycles.
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