Hyperbolic systems and fluctuation theorems

Question: Is Thermodynamics extendible to nonequilibrium phenomena?

Minimal program: extension to stationary states

This means asking more than whether *Temperature, Entropy, Energy* ... can be defined.

First problem is that to keep a system stationary out of equil. *dissipation* is necessary.

Dissipation requires that the system interacts with *thermostats*.

Should be modeled fundamentally as *infinite systems* capable of sustaining *e.g.* a temperature *gradient*.

This implies that the ambient space has to be 3 dimensional (no harmonic function exists if ≤ 2 in infinite space).

Major advance has been the proposal of treating the thermostats *phenomenologically* (Hoover, Evans '980s).

 $U_i = \sum_{ik} v(q_k - q_i)$ T₂ $W_{0i} = \sum_{j \in C_0, k \in T_i} v(q_k - q_j)$ $\alpha_i = \frac{\sum_{j \in C_0, k \in T_i} (\partial_{q_k} v(q_k - q_j) - \dot{U}_k)}{k_B T_k}$ Ta $\ddot{\vec{X}}_{0} = -\partial_{\vec{X}_{0}}(U_{0}(\vec{X}_{0}) + \sum_{i>0} W_{0i}(\vec{X}_{0}, \vec{X}_{i})) + \vec{E}(\vec{X}_{0})$ $\ddot{\vec{X}}_{i} = -\partial_{\vec{X}_{i}}(U_{i}(\vec{X}_{i}) + W_{0i}(\vec{X}_{0}, \vec{X}_{i})) - \alpha_{i}\dot{\vec{X}}_{i}$ α_i s.t. $\frac{m}{2} \sum_{i>0} \vec{X}_i^2 = \frac{1}{2} N_i k_B T_i$ const: $\alpha_i = \frac{L_i - \dot{U}_i}{N_i k_B T_i}$ Prelim.: does it matter? if $d \leq 3$ & smooth pair interactions **Theorem:** a.a. data \vec{X} chosen with a distribution in which the thermostats are in a Gibbs state with temperatures T_i evolved into $\vec{X}(t)^{[n]}$ by letting move only particles in a ball of radius $r2^n$ with or without $a_i \vec{X}_i$ converge to the SAME \vec{X}^{∞} , exponentially fast at fixed distance from 0. (Presutti, GG) Bernoulli 2013 16/05/2013 2/11

Open: does the evolution lead to a stationary distribution? only partial unsatisf. answers for finite thermostats.

NEQ Thermodynamics starting point is the Ruelle's principle for fluids: as in equil. \exists a single natural statistics for stationary states: because dynamic is *hyperbolic*.

Chaotic hypothesis: (Cohen, G) Motions on the attracting set of a chaotic system can be regarded as motions of a smooth transitive reversible hyperbolic system.

Mathematical meaning: There exist reversible Markovian partitions $\mathcal{P} = (P_1, \ldots, P_n)$. Usable to prove general properties: none proposed since Onsager reciprocity.

History of x on \mathcal{P} , $\vec{\sigma} = \{\sigma_i\}_{i=0}^{\infty}$ s.t. $S^i x \in P_{\sigma_i}$ defines an adapted coordinate for x determining x with exponential precision and makes dynamics universal

FT: The stationary distr. of the random variable

$$p = \frac{1}{\tau} \sum_{k=0}^{\tau} \frac{s(S^k \vec{X})}{\langle s \rangle_{srb}}, \quad Prob(p \in \Delta) = e^{\tau \max_{p \in \Delta} \zeta(p) + o(\tau)}$$

then $\frac{Prob(p)}{Prob(-p)} = e^{-p\tau \langle s \rangle}$: more precisely exact symmetry

$$\zeta(-p) = \zeta(p) - p \langle s \rangle_{srb}$$

Importance: $s(\vec{X})$, hence p has a physical interpretation: *i.e.* it is the *entropy increase of the thermostats*.

Experimentally accessible and the Fluctuation Relation is model independent; possibly first non trivial general noneq. property after Onsager reciprocity (OR).

Time reversal leads to many other FRs.

If $F_1(\vec{X}), \ldots, F_n(\vec{X})$ are *n* TR-odd obs., $(F_i(Ix) = -F_i(x))$, given *n* patterns $\varphi_1(t), \ldots, \varphi_n(t)$ then

If $F_1(\vec{X}), \dots, F_n(\vec{X})$ are *n* TR-odd obs. $(F_i(Ix) = -F_i(x))$, given *n* patterns $\varphi_1(t), \dots, \varphi_n(t)$ then $\frac{Prob(\{F_i(S^k\vec{X}) \stackrel{\varepsilon}{=} \varphi_i(k)\}_{k=\tau}^{\tau}, p)}{Prob(\{F_i(S^k\vec{X}) \stackrel{\varepsilon}{=} -\varphi_i(-k)\}_{k=\tau}^{\tau}, -p)} =_{\tau \to \infty} e^{p\tau \langle s \rangle}$

again no free parameters (and independent on F_i).

"All needed to reverse time is to reverse entropy production". also \Rightarrow OR & Green-Kubo.

How the CH can be viewed from Physics? it allows to define precisely coarse graining, to count phase space points, to better understand of entropy and finally to a "natural proposal" of quantitative meas. of quasi-static processes.

Coarse graining on a MP $\mathcal{P} = \{P_1, P_2, \ldots, P_s\};$

 $\mathrm{MP} \to \mathrm{code} \text{ by } \{\sigma_i\}_{i=-\infty}^{\infty} \text{ s.t. } x \longleftrightarrow \{\sigma_i\}_{i=-\infty}^{\infty} \text{ s.t. } S^i x \in P_{\sigma_i}$

Refine $\mathcal{P} \to \mathcal{P}_n$ s.t. "all" F are constants on sets of \mathcal{P}_n

Sets in $\mathcal{P}_n = \{P(\sigma_{-n}, \dots, \sigma_n) \stackrel{def}{=} \cap_{-n}^n S^{-i} P_{\sigma_i}\}_{\vec{\sigma}}$ The $P_{\sigma_{-n},\dots,\sigma_n} \equiv P(\vec{\sigma})$ will be called coarse grained cells. The SRB is a distribution with weight $w(\vec{\sigma})$ for $P(\vec{\sigma})$ and admits an explicit formula

$$w(\vec{\sigma}) = e^{-\Lambda_{u,n}(\vec{\sigma})} \implies \mu_{SRB}(P(\vec{\sigma})) = \frac{e^{-\Lambda_{u,n}(\vec{\sigma})}}{\sum_{\vec{\sigma}'} e^{-\Lambda_{u,n}(\vec{\sigma}')}}$$

Interpretation $(\frac{1}{2}$ -heuristic): in simulations phase space is discrete and evolution is a map on a finite space.

Discard nonrecurrent points (*i.e.* transient, present in any code): remain those on the "attractor" \mathcal{A} .

Thier number in $\mathcal{A} \cap P(\vec{\sigma})$ is the fraction of the total \mathcal{N}

 $\mathcal{N}(\vec{\sigma}) = \mathcal{N}\mu_{SRB}(P(\vec{\sigma}))$

and evolution is a one cycle permutation of \mathcal{A} , "ergodicity" Bernoulli 2013 16/05/2013 6/11 This unifies equilibrium and nonequilibrium:

In the first case all points are recurrent (ergodicity) and

 $w(\vec{\sigma}) = volume(P(\vec{\sigma})$

In both cases the stationary dist. is equal weight of the phase space points, *i.e.* SRB \supset Boltzmann.

It becomes possible therefore to count the number of points: is it nonequilibrium Entropy ??

(My) answer NO!: both in equilibrium and nonequilibrium the count is ambiguous: it depends on the precision " ε " of discretization.

BUT equil. ambiguity = an additive constant $("3N \log \hbar")$ independent on the state.

This is not the case out of equilibrium: still ambiguous by additive constant which is state dependent (in example (GG) depends on density and temp. as ε changes).

Neverthesless $S_{\mathcal{P},\varepsilon} = k_B \log \mathcal{N}_{\mathcal{P},\mathcal{A},\varepsilon}$ is maximal among all distributions on the attractor.

Simply as it corresponds to equal weights: hence it can play the role of Lyapunov function measuring the distance of an evolving distribution to the SRB; just as in equilibrium !!

What about processes? transforming μ_{ini} into another μ_{fin} ? under external parameters $\Phi(t)$ changes of (forces, thermostats temperatures, volume, &tc) as $0 \le t \le +\infty$.

At $0 < t < \infty$ time evolution $x = (\vec{X}, \vec{X}) \rightarrow x(t) = S_{0,t}x$ is non autonomous evolution. Initial state evolves into μ_t

$$\langle F \rangle_{\mu_t} = \int_{\mathcal{F}(t)} \mu_t(dx) F(x) \stackrel{def}{=} \int_{\mathcal{F}(0)} \mu_0(dx) F(S_{0,t}^{-1}x)$$

Imagine $\Phi(t)$ stepping from $\Phi(0)$ to $\Phi(\infty)$. Clearly

$$\langle F \rangle_{\mu_{srb}(t)} \neq \langle F \rangle_{\mu_t}$$

In the previous model phase space contraction is

$$s(\dot{\vec{X}}, \vec{X}) = \sum_{a} \frac{\dot{Q}_a}{k_B T_a} - N \frac{\dot{V}_t}{V_t} - \sum_{a} \frac{\dot{U}_a}{k_B T_a}$$

which dimensionally is a $time^{-1}$.

It is natural (GG) to introduce the quantity

$$t_{irreversibiliy}^{-1} = \frac{1}{N^2} \int_0^{+\infty} \left(\langle s(t) \rangle_{\mu_t} - \langle s(t) \rangle_{SRB,t} \right)^2 dt$$

By Chaotic Hypothesis μ_t evolve to $\mu_{SRB,t}$ exponentially fast under the "frozen evolution".

Therefore the integral will converge.

The slower the evolution the smaller the integral: it will $\rightarrow 0$ as evolution slows down:

 $t_{irreversibility} \rightarrow +\infty$

Interpretation:

 $t_{irreversibility}$ is the time necessary to realize that the process is irreversible

This makes sense both in equilibrium thermodynamics and out of equilibrium

Example: Joule-Thomson: (gas expansion in a piston)

S = section; $H_t = H_0 + w t$ distance base-moving lid;

$$\begin{split} \Omega &= S \, H_t \text{ increases at rate } N \frac{w}{H_t}.\\ \text{Hence } \langle s_t \rangle_t \text{ is } -N \frac{w}{H_t}, \text{ while } s_t^{srb} \equiv 0.\\ T &= \frac{L}{w} \text{ process duration (to increase height by } L)\\ t_{irreversibility}^{-1} &= N^{-2} \int_0^T N^2 \left(\frac{w}{H_t}\right)^2 dt \xrightarrow[T \to \infty]{} w \frac{L}{H_0(H_0 + L)} \end{split}$$

immediately, if $w = \infty$, irreversibility becomes apparent never, if $w \to 0$: quasi static $\equiv \infty$ -slow.

In any event "quasi staticity" becomes quantitative notion

In the latter example it is customary to estimate the degree of irreversibility at the lift of the lid by the *thermodynamic equilibrium entropy* change between initial and final states.

It would of course be interesting to have a general definition of entropy of a non stationary state (like the states μ_t at times ($t \in (0, \infty)$) in the example just discussed) to allow connecting irreversibility time scale to thermodynamic entropy variation in processes leading from an initial equilibrium state to a final equilibrium state.

It is also not inconceivable a quantitative study of the irreversibility of attempts at realizing Carnot cycles.

References