Process irreversibility and stationary states
in small (and large) systems

Process: Evolution starting at a stationary state — ending
in stationary state. Equations of motion are ¢t — dependent
&= f(x,t) = JOV(z) + g(x,t)

(1) Gas in contact with reservoirs with varying temperature
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(2) Gas in a container with moving wall

V(x,t)
L L )
L L()
(3) Paddle wheels stirring a liquid
w(t)

2: Joule-Thompson expansion

3: Joule paddle wheels to measure
heat-work conversion

t dependence of g(x,t) vanishes as t becomes large: then

1: stationary — stationary; 2,3: equilibrium — equilibrium
Irreversible processes: how irreversible?

Natural time scale is associated with the process.
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(a) Initial state: distribution pq,
(b) po evolves into p, in time ¢

(C) /’lt t—00 /’[00
A natural time scale (GG 2006) to be interpreted as time
scale over which irreversibility becomes manifest is

1

def >
2 [ o )

Tproc

oi(z) = entropy production=phase space contr. rate at ¢
tsrp(t) is the SRB distribution eventually reached if the
t-dependence of g(z,t) were “frozen”.

Example g(z,t) = ¢(t)g(z): under the chaotic hypothesis
Tproc 15 finite
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e(t) A e(o0)=1

1)

t1 to t3
If £(¢) is frozen to £(t;) in the interval ¢;,¢;,1:

(( oy, >/u — (o, >/ts7-b(t,-,)>2 ~ O(6% 7Rty
= 7L~ constd® ! ftt_i“ dte™"" = const §* n = const &

proc

Intepretation: “quasi static processes” from equil. to equil.
manifest irreversibility after arbitrarily long time 7.



Tproc 18 larger the slower is the process. vacuum expansion

of free gas Tproe = 0 (as o(z) = 1 = 0(¢), [6(t)* = o0).

Monotonic: if slow = 7,,,. = t = duration,

e -1 2
if fast — Tproe ~ Ty ojaw0t-

_Q
(Free gas) Carnot’s cycle: 7, ~ t e~ nir
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Problem: Construct examples of nonequilibrium states

g =
To p=—29Vsing+7— Sp+/Zw
J B

Pendulum with inertia J, gravity 2Vg

I

9 torque 79, white noise w, damping &
w white noise with (dw?) = ((w(t +dt) —w(t))?) = dt
B! noise temperature.

Problem: find the stationary state, Simulations exist
Stationary F'(p,q)dpdq: = the PDE L*F =0

cF = {(50,F(q.p) + 29V sing = 1)0,F (4. p))

& (5 2F @.) + 0,0 Fla.p)) }
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Gen. results: simulations and theory, [1]: 3 smooth F

_B
0 < F(q,p) = ;’J"B

p(p,q) € La(G(p)dpdq) N Ly (G (p)dpdq)

p

iﬂ(p, q) = G(p)pp,q),

Hence p(p, q) = >277 pu(q) : p" : with

P def (Jﬁil)EHn( L) (Wick,Hermite polynomials)

2 V2



In dimensionless form

o) pa()emnl, =BT, B, BV,

Problem: “Construct p,(¢q)” so that L*F =0
Let 0,(q) = 7, + 0,(q): average + average-less

Hermite polyn. rules yield
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95, = —n(n —1) (aan_z + B0UG, 5 + BOUT,_,
+ B190n—2 + 5n—1>

Op = — (WﬂL B0 En—l)

Identity: o, =0 (from n = 1), 3y = 1. But two regimes:

gV <L 19 “Rotational regime”
gV > 1y “Oscillation regime”

If 79 = g7 distinguish the two as V < 7and V > 7



Idea: possibly o, analytic in g 77. Only in a given regime.

onlq) = T[z
]

o [

~[r]
()—i—ga”()—i—..., FT. o,
+ g7 [1]+92 [2}_‘_“'

= convergence problems expected: “phase transitions”?

- 7]
Algebraic steps = recursion for Sg }k = ( ([Tr’f’“ )51;’1

= link S0} toS7, .  K=kkxl
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] 1 g 2r] ]~ (1
Sn,k :Mn-il,ksn-i-l,k - Xn-i—l,k:’ S2,k =09k (0>
EZ’] :127[:], F([)r} =0, 7,59 =0, To=1

n

[r
27

with X[, vl depend on ' < r and &([{L depends on o. L

For each order EKL has to be determined. Is it Arbitrary?



5% has to be determined. Not Arbitrary

e.g. G }k must be s.t. Y kpn . p" : is convergent

SRR}
(1) As PZ,]k oy it must be & O'nk, < O(Ae™ ¥ y/nl), k> 0.

(2) Special sol. &, o EZC‘:W(M#])*(h’"))zhﬂ, n>27

(3) Solution

o0

0 -
A (]\/[,fh)*(h_n) <1> - Z(AJT:—&I)*(}L_TL)XMH

h=n

Rutgers 21/11/2013 8/11



Homogeneous equation (i.e. X = 0) solution ¢, with the
sequence A(3,n) M;kl:M;,i . Mn_é ((1]) —= .
Product of 2 x 2 matrices = continued fractions

1 def k?

o(n,h) = : : z >0

= o e T ’r]
nl—‘rn+1 41+}22
-

Complete solution is expressed in closed form in terms of
¢(n, h);

Bounds follow from the continued fractions theory.
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Result (Iacobucci, Olla, G, 2013, [2, 3]: VJ,3,&,V, T

(1) the order r > 0 coeff. pg](q) of formal Taylor expansion
for pn(q) in powers of g can be constructed for all r.

(2) Fourier’s coefficients pg:]k vanish for |k| > r and satisfy

€PN < Ase v <R vk
’ n.

for A,, ¢ suitably chosen.




Thus: Formal solution to all orders in g for the Taylor
expansion of p(p,q) = > 9" " (g, p).

However: the coefficients can be estimated uniformly in
V, 7 in any bounded set = convergence is not expected.

At best an asymptotic solution in one of the two regimes.

Questions: (1) find a constructive solution;

(2) is there a phase transition between the two regimes?
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Carnot cycle Vo = Vi = Vo = V3 = 1

dV d dV
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