Hyperbolic systems, fluctuation theorems NESS construction

Question: Is Thermodynamics extendible to nonequilibrium phenomena?

Minimal program: extension to stationary states

Temperature, Entropy, Energy ... can be defined ?

dissipation is necessary.

 \Rightarrow system interacts with *thermostats*.

Thermostats models? ∞ sustaining a temperature gradient. ambient space has to be 3 dimensional

Strasbourg 30/05/2013

Major advance finite thermostats (Hoover, Evans '980s).

T₁ $U_i = \sum_{ik} v(q_k - q_i)$ **T**₂ $W_{0i} = \sum_{j \in C_0, k \in T_i} v(q_k - q_j)$ C۵ $\alpha_i = \frac{\sum_{j \in C_0, k \in T_i} (\partial_{q_k} v(q_k - q_j) - \dot{U}_k)}{k_P T_k}$ T₃ $\ddot{\vec{X}}_{0} = -\partial_{\vec{X}_{0}}(U_{0}(\vec{X}_{0}) + \sum_{i>0} W_{0i}(\vec{X}_{0}, \vec{X}_{i})) + \vec{E}(\vec{X}_{0})$ $\ddot{\vec{X}}_{i} = -\partial_{\vec{X}_{i}}(U_{i}(\vec{X}_{i}) + W_{0i}(\vec{X}_{0}, \vec{X}_{i})) - \alpha_{i} \dot{\vec{X}}_{i}$ α_i s.t. $\frac{m}{2} \sum_{i>0} \dot{\vec{X}}_i^2 = \frac{1}{2} N_i k_B T_i$ const: $\alpha_i = \frac{L_i - \dot{U}_i}{N_i k_B T_i}$ Prelim.: does it matter? if d < 3 & smooth pair interactions **Theorem:** a.a. data \vec{X} chosen with a distribution in which the thermostats are in a Gibbs state with temperatures T_i evolved into $\vec{X}(t)^{[n]}$ by letting move only particles in a ball of radius $r2^n$ with or without $a_i \vec{X}_i$ converge to the SAME \vec{X}^{∞} , exponentially fast at fixed distance from 0. (Presutti, GG) Strasbourg 30/05/2013 2/17

Open: does the evolution lead to a stationary distribution? NEQ Ruelle's principle for fluids: \exists a single natural NESS: because dynamic *hyperbolic*.

Chaotic hypothesis: (Cohen, G) Motions on the attracting set of a chaotic system can be regarded as motions of a smooth transitive reversible hyperbolic system.

Mathematical meaning: There exist reversible Markovian partitions $\mathcal{P} = (P_1, \ldots, P_n) \Rightarrow$ general properties.

 $MP \Rightarrow History \text{ of } x \text{ on } \mathcal{P}, \vec{\sigma} = \{\sigma_i\}_{i=0}^{\infty} \text{ s.t. } S^i x \in P_{\sigma_i} \text{ defines adapted coordinates for } x$

Strasbourg 30/05/2013

FT: The stationary distr. of the random variable

$$p = \frac{1}{\tau} \sum_{k=0}^{\tau} \frac{s(S^k \bar{X})}{\langle s \rangle_{srb}}, \quad Prob(p \in \Delta) = e^{\tau \max_{p \in \Delta} \zeta(p) + o(\tau)}$$

then $\frac{Prob(p)}{Prob(-p)} = e^{-p\tau \langle s \rangle}$: more precisely exact symmetry

$$\zeta(-p) = \zeta(p) - p \langle s \rangle_{srb}$$

Importance: $s(\vec{X})$, hence p has a physical interpretation: *i.e.* it is the *entropy increase of the thermostats*.

Experimentally accessible and the Fluctuation Relation is model independent; possibly first after Onsager reciprocity. Time reversal leads to many other FRs.

If $F_1(\vec{X}), \ldots, F_n(\vec{X})$ are *n* TR-odd obs., $(F_i(Ix) = -F_i(x))$, given *n* patterns $\varphi_1(t), \ldots, \varphi_n(t)$ then

Strasbourg 30/05/2013

If $F_1(\vec{X}), \dots, F_n(\vec{X})$ are *n* TR-odd obs. $(F_i(Ix) = -F_i(x))$, given *n* patterns $\varphi_1(t), \dots, \varphi_n(t)$ then $\frac{Prob(\{F_i(S^k\vec{X}) \stackrel{\varepsilon}{=} \varphi_i(k)\}_{k=\tau}^{\tau}, p)}{Prob(\{F_i(S^k\vec{X}) \stackrel{\varepsilon}{=} -\varphi_i(-k)\}_{k=\tau}^{\tau}, -p)} =_{\tau \to \infty} e^{p\tau \langle s \rangle}$

again no free parameters (and independent on F_i).

"All needed to reverse time is to reverse entropy production". also \Rightarrow OR & Green-Kubo.

How the CH can be viewed from Physics? it allows to define precisely coarse graining, to count phase space points, to better understand of entropy and finally to a "natural proposal" of quantitative meas. of quasi-static processes.

Coarse graining on a MP $\mathcal{P} = \{P_1, P_2, \ldots, P_s\};$

 $\mathrm{MP} \to \mathrm{code} \text{ by } \{\sigma_i\}_{i=-\infty}^{\infty} \text{ s.t. } x \longleftrightarrow \{\sigma_i\}_{i=-\infty}^{\infty} \text{ s.t. } S^i x \in P_{\sigma_i}$

Refine $\mathcal{P} \to \mathcal{P}_n$ s.t. "all" F are constants on sets of \mathcal{P}_n

Sets in $\mathcal{P}_n = \{P(\sigma_{-n}, \dots, \sigma_n) \stackrel{def}{=} \cap_{-n}^n S^{-i} P_{\sigma_i}\}_{\vec{\sigma}}$ The $P_{\sigma_{-n},\dots,\sigma_n} \equiv P(\vec{\sigma})$ will be called coarse grained cells. The SRB is a distribution with weight $w(\vec{\sigma})$ for $P(\vec{\sigma})$ and admits an explicit formula

$$w(\vec{\sigma}) = e^{-\Lambda_{u,n}(\vec{\sigma})} \implies \mu_{SRB}(P(\vec{\sigma})) = \frac{e^{-\Lambda_{u,n}(\vec{\sigma})}}{\sum_{\vec{\sigma}'} e^{-\Lambda_{u,n}(\vec{\sigma}')}}$$

Interpretation $(\frac{1}{2}$ -heuristic): in simulations phase space is discrete and evolution is a map on a finite space.

Discard nonrecurrent points (*i.e.* transient, present in any code): remain those on the "attractor" \mathcal{A} .

Thier number in $\mathcal{A} \cap P(\vec{\sigma})$ is the fraction of the total \mathcal{N}

 $\mathcal{N}(\vec{\sigma}) = \mathcal{N}\mu_{SRB}(P(\vec{\sigma}))$

and evolution is a one cycle permutation of \mathcal{A} , "ergodicity" Strasbourg 30/05/2013 6/17 This unifies equilibrium and nonequilibrium:

In both cases the stationary dist. is equal weight of the phase space points, *i.e.* SRB \supset Boltzmann.

Becomes possible therefore to count the number of points: is it nonequilibrium Entropy ??

(My) answer NO!: both in equilibrium and nonequilibrium the count is ambiguous: it depends on the precision " ε " of discretization.

BUT equil. ambiguity = an additive constant $("3N \log \hbar")$ independent on the state.

Not so for NESS is state dependent

Strasbourg 30/05/2013

Neverthesless $S_{\mathcal{P},\varepsilon} = k_B \log \mathcal{N}_{\mathcal{P},\mathcal{A},\varepsilon}$ is maximal among all distributions on the attractor.

Simply as it corresponds to equal weights: hence it can play the role of Lyapunov function measuring the distance of an evolving distribution to the SRB; just as in equilibrium !!

What about processes? transforming μ_{ini} into another μ_{fin} ? under external parameters $\Phi(t)$ changes of (forces, thermostats temperatures, volume, &tc) as $0 \le t \le +\infty$.

At $0 < t < \infty$ time evolution $x = (\vec{X}, \vec{X}) \to x(t) = S_{0,t}x$ is non autonomous evolution. Initial state evolves into μ_t

$$\langle F \rangle_{\mu_t} = \int_{\mathcal{F}(t)} \mu_t(dx) F(x) \stackrel{def}{=} \int_{\mathcal{F}(0)} \mu_0(dx) F(S_{0,t}^{-1}x)$$

Imagine $\Phi(t)$ stepping from $\Phi(0)$ to $\Phi(\infty)$. Clearly

$$\langle F \rangle_{\mu_{srb}(t)} \neq \langle F \rangle_{\mu_t}$$

In the previous model phase space contraction is

$$s(\dot{\vec{X}}, \vec{X}) = \sum_{a} \frac{\dot{Q}_a}{k_B T_a} - N \frac{\dot{V}_t}{V_t} - \sum_{a} \frac{\dot{U}_a}{k_B T_a}$$

which dimensionally is a $time^{-1}$.

It is natural (GG) to introduce the quantity

$$t_{irreversibiliy}^{-1} = \frac{1}{N^2} \int_0^{+\infty} \left(\langle s(t) \rangle_{\mu_t} - \langle s(t) \rangle_{SRB,t} \right)^2 dt$$

By Chaotic Hypothesis μ_t evolve to $\mu_{SRB,t}$ exponentially fast under the "frozen evolution".

Therefore the integral will converge.

The slower the evolution the smaller the integral: it will $\rightarrow 0$ as evolution slows down:

 $t_{irreversibility} \rightarrow +\infty$

Interpretation:

 $t_{irreversibility}$ = time to "realize" the process is irreversible

Example: Joule-Thomson: (gas expansion in a piston)

S = section; $H_t = H_0 + w t$ distance base-moving lid;

 $\Omega = S H_t$ increases at rate $N \frac{w}{H_t}$.

Hence $\langle s_t \rangle_t$ is $-N \frac{w}{H_t}$, while $s_t^{srb} \equiv 0$. $T = \frac{L}{w}$ process duration (to increase height by L)

$$t_{irreversibility}^{-1} = N^{-2} \int_0^T N^2 \left(\frac{w}{H_t}\right)^2 dt \xrightarrow[T \to \infty]{} w \frac{L}{H_0(H_0 + L)}$$

immediately, if $w = \infty$, irreversibility becomes apparent never, if $w \to 0$: quasi static $\equiv \infty$ -slow.

Strasbourg 30/05/2013

In any event "quasi staticity" becomes quantitative notion

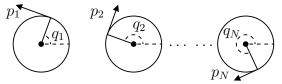
In the latter example it is customary to estimate the degree of irreversibility at the lift of the lid by the *thermodynamic equilibrium entropy* change between initial and final states.

BUT Not quantitative

It is also not inconceivable a quantitative study of the irreversibility of attempts at realizing Carnot cycles.

Strasbourg 30/05/2013

A.Iacobucci, S.Olla, G.G.



Representation of N rotators $\vec{q} = (q_1, \ldots, q_N) \in T^N$ phase space.

On 1 act torque τ , damping ξ , noise \dot{w} , n.n. potential

 $2gV \cos q_i + g'V \cos(q_i - q_{i+1}) + 2gV \cos q_{i+1}$ Problem: find the stationary state, if any Simulations exist, no theory. Then particular case N = 1,

Forced pendulum with noise and friction (gravity=2Vg)

Strasbourg 30/05-01/06/2013

Stochastic equation on $T^1 \times R$:

$$\dot{q} = \frac{p}{J}, \qquad \dot{p} = 2gV\sin q - \tau - \frac{\xi}{J}p + \sqrt{\frac{2\xi}{\beta}}\dot{w}$$

 \dot{w} white noise with $dw^2 = (w(t+dt) - w(t))^2 = dt$ β noise temperature⁻¹, J=inertia (constants).

Stationary F(p,q)dpdq: \Rightarrow the PDE $\mathcal{L}^*F = 0$

$$\mathcal{L}^*F = -\left\{ \left(\frac{p}{J} \partial_q F(q, p) - (-2gV \sin q + \tau) \partial_p F(q, p) \right) \\ -\xi \left(\beta_0^{-1} \partial_p^2 F(q, p) + \frac{1}{J} \partial_p (p F(q, p)) \right) \right\}$$

Gen. results: interesting simulations, [1], and theory, [2]

Strasbourg 30/05-01/06/2013

(1) exists a smooth solution $F \in L_2(dpdq)$, [2]

(2) positive
$$F(q,p) = \frac{e^{-\frac{\beta}{2J}p^2}\rho(p,q)}{\sqrt{2J\beta^{-1}}} = G(p)\rho(p,q), [2]$$

(3) exponential approach from $\delta(p,q)$, [2]

(4) $\rho(p,q) \in L_2(G(p)dpdq)$

Hence $\rho(p,q) = \sum_{n=0}^{\infty} \rho_n(q) : p^n$: with : $p^n : \stackrel{def}{=} \left(\frac{J\beta^{-1}}{2}\right)^{\frac{n}{2}} H_n(\frac{p}{\sqrt{2J\beta^{-1}}})$ (Wick,Hermite polynomials)

or in dimensionless form

 $\sigma_n(q) \stackrel{def}{=} \rho_n(q)\xi^n n!, \qquad \eta \stackrel{def}{=} \beta\xi^2/J, \qquad \beta\tau, \qquad \beta V,$ **Problem:** "Construct $\rho_n(q)$ " so that $\mathcal{L}^*F = 0$ Hermite poly. rules:

$$p: p^{n} :=: p^{n+1}: + \frac{J}{\beta}n : p^{n-1}: \quad \partial_{p}: p^{n} := n : p^{n-1}:$$

If $\sigma_n(q) = \overline{\sigma}_n + \widetilde{\sigma}_n(q)$, $\overline{\sigma}_n \stackrel{def}{=}$ average of σ_n

$$\mathcal{L}^*G(p)\rho(p,q) \equiv \mathcal{L}^*\Big(G(p)\sum_{n=0}^{\infty}\rho_n(q):p^n:\Big)$$

by substitution

$$\partial \widetilde{\sigma}_n = -\eta (n-1) \Big(\partial \widetilde{\sigma}_{n-2} + \beta \partial \widetilde{U} \widetilde{\sigma}_{n-2} + \beta \partial U \overline{\sigma}_{n-2} \\ + \beta \tau \widetilde{\sigma}_{n-2} + \widetilde{\sigma}_{n-1} \Big) \\ \overline{\sigma}_n = - \Big(\overline{\beta \partial U} \widetilde{\sigma}_{n-1} + \beta \tau \overline{\sigma}_{n-1} \Big)$$

Idea: possibly σ_n are analytic in g ??

$$\widetilde{\sigma}_n(q) = g\widetilde{\sigma}_n^{[1]}(q) + g^2\widetilde{\sigma}_n^{[2]}(q) + \dots$$
$$\overline{\sigma}_n = \overline{\sigma}_n^{[0]} + g\overline{\sigma}_n^{[1]} + g^2\overline{\sigma}_n^{[2]} + \dots$$

Fix an order R in the expansion in powers of g

Theorem: Given R > 0 there is $\varepsilon_R > 0$ such that if $\xi^{-1}, \beta \tau < \varepsilon_R$ ("large viscosity, small forcing") then (1) the order $r \ge 0$ coeff. $\rho_n^{[r]}(q)$ of formal Taylor expansion for $\rho_n(q)$ in powers of g can be constructed for $r \le R$. (2) Fourier's coefficients $\rho_{n,k}^{[r]}$ vanish for |k| > r and satisfy

$$\xi^{n}|\rho_{n,k}^{[r]}| \le A_{r} \frac{(C|k|)^{n}}{n!} e^{-c|k|}, \qquad \forall r \le R, \,\forall k$$

for A, C suitably chosen R-dependent.

Unless convergence is proved we cannot even be sure that $\sum_{r=0}^{R} g^r \sum_{n=0}^{\infty} \rho_n(q) : p^n :=$ Taylor exp. $\rho(p,q)$ to order R. Question: is this a sign that $\sigma_n(q)$ is not analytic? Strasbourg 30/05-01/06/2013

References

- A. Iacobucci, F. Legoll, S. Olla, and G. Stoltz. Negative thermal conductivity of chains of rotors with mechanical forcing. *Physical Review E*, 84:061108 +6, 2011.
- J. C. Mattingly and A. M. Stuart. Geometric ergodicity of some hypo-elliptic diffusions for particle motions.

Markov Processes and Related Fields, 8:199–214, 2002.

Strasbourg 30/05-01/06/2013