Friction & reversibility in the Lorenz96 equation and chaotic hypothesis (V.Lucarini & GG)

Stationary states: \Rightarrow probab. distrib. on phase space.

Collections of stationary states \Rightarrow ensembles \mathcal{E} : in equilibrium give the statistics (canonical, microc., &tc).

Can this be done for stationary nonequilibrium? Motion:

$$\dot{x}_j = f_j(x) + F_j - \nu (Lx)_j, \qquad \nu > 0, \ j = 1, \dots, N$$

L>0 dissipation matrix: e.g. $(Lx)_j=x_j,\ \nu>0$ (friction), f(x)=f(-x) (time reversal)

Chaotic hypothesis: "think of it as an Anosov system" (Cohen,G)

(analogue of the periodicity≡ergodicity hypothesis of Boltzmann, Clausius, Maxwell, and possibly as unintuitive)

Time reversal symmetry is violated by friction.

BUT it is a fundamental symmetry: \Rightarrow possible to restore?

How? in which sense? Start from a special case:

the Lorenz96 eq. (periodic b.c.)

$$\dot{x}_j = x_{j-1}(x_{j+1} - x_{j-2}) + F - \nu x_j, \qquad j = 0, \dots, N-1$$

Vary ν and let μ_{ν} stationary distrib. Let $\overline{E} = \langle \sum_{j} x_{i}^{2} \rangle_{\mu_{\nu}}$: this is an "ensemble" (viscosity ensemble)

Replace
$$\nu$$
 by $\alpha(x) = \frac{\sum_{i} Fx_{i}}{\sum_{i} x_{i}^{2}}$

New Eq. has $E(x) = \sum_i x_i^2$ as exact constant of motion

$$\dot{x}_j = x_{j-1}(x_{j+1} - x_{j-2}) + F - \alpha(x)x_j,$$

Vary E and let μ_E station. distrib.: (viscosity ensemble) Volume contracts by $\sum \partial_j(a(x)x_j)$

$$\sigma(x) = (N-1)\alpha(x), \quad p = \tau^{-1} \int_0^{\tau} \sigma(x(t))dt/\langle \sigma \rangle$$

Conjecture: Equivalent ensembles:

State $\widetilde{\mu}_E$ labeled by E corresponds to states μ_{ν} labeled by ν are equivalent if $\widetilde{\mu}_E(\alpha(x)) = \mu_{\nu}(E(x))$

$$\mu_{\nu} \sim \widetilde{\mu}_E \iff E = \mu_{\nu}(E(\cdot)) \iff \nu = \widetilde{\mu}_E(\alpha(\cdot))$$

Give the same statistics in the limit of large $R = \frac{F}{\nu^2}$.

Analogy canonical μ_{β} = microcanonical $\widetilde{\mu}_E$ if

$$\mu_{\beta}(E(.)) = E \longleftrightarrow \widetilde{\mu}_{E}(K(.)) = \frac{3}{2\beta}N$$

in the limit of large volume (fixed density or specific E).

Why? several reasons. Eg. chaoticity implies

$$\alpha(x(t)) = \frac{\sum_{i} Fx_{i}}{\sum_{i} x_{i}^{2}}$$
 "self – averaging"

Tests performed at N=32 (with checks up to N=512) and high R (at R>8, system is very chaotic with >20 Lyap.s exponents and at larger R it has $\sim \frac{1}{2}N$ L.e.)

- 1) $\mu_{\overline{E}}(\alpha) = \nu \longleftrightarrow \mu_{\nu}(E) = \overline{E}$
- 2) If g is reasonable ("local") observable $\frac{1}{T} \int_0^T g(S_t x) dt$ has same statistics in both
- 3) The "Fluctuation Relation" holds for the fluctuations of phase space vol (reversible case): reflect chaotic hypothesis
- 4) Found its N-independence and ensemble independence of the Lyapunov spectrum (Livi,Politi,Ruffo)
- 5) In so doing found or confirmed several scaling and pairing rules for Lyapunov exponents (somewhat surprising) and checked a local version of the F.R.

Scaling of energy-momentum (irreversible model):

$$E = \sum_{i} x_{i}^{2}, \qquad M = \sum_{i} x_{i}$$

$$\frac{\overline{E}_{R}^{i}}{N} \sim c_{E} R^{4/3}, \quad \frac{\overline{M}_{R}^{i}}{N} \sim 2c_{E} R^{1/3} \quad c_{E} = 0.59 \pm 0.01$$

$$\frac{std(E)_{R}^{i}}{N} = \frac{\left(\overline{E}_{R}^{2} - (\overline{E}_{R}^{i})^{2}\right)^{1/2}}{N} = \tilde{c}_{E} R^{4/3}, \quad \tilde{c}_{E} \sim 0.2c_{E}$$

$$\frac{std(M)_{R}^{i}}{N} = \tilde{c}_{M} R^{2/3} \quad \tilde{c}_{E} \sim 0.046 \pm 0.001$$

$$t_{dec}^{i,M} \sim c_{M} R^{-2/3} \quad c_{M} = 1.28 \pm 0.01$$

The first two confirm Lorenz96, the 3d,4th "new", 5th is the "decorrelation" time $\langle M(t)M(0) \rangle$

(Irreversible) model Lyapunov exponents arranged pairwise

Black: Lyap. exp.s R = 2048

Magenta: $\pi(j) = (\lambda_j + \lambda_{N-j+1})/2$.

Blue: Lyap. exp.s R = 256

value of $\pi(j)$ at R=252 (invisible below magenta).

Roma2 26/03/2015

Pairing accuracy. Irreversible model.

Blue:
$$\pi(j) = (\lambda_j + \lambda_{N-j+1})/2$$
, $8 < R < 2048$, $N = 32$.

Almost constant: as it can be seen if compared to λ_j . The small variation reflects the fact that the spectrum shows an asymptotic shape.

Pairing accuracy. Irreversible model.

Blue:
$$\pi(i) = (\lambda_i + \lambda_{N-i+1})/2$$
, $8 < R < 2048$, $N = 32$.

Almost constant: as it can be seen if compared to λ_j . The small variation reflects the fact that the spectrum shows an asymptotic shape.

Continuous limit of Lyapunov Spectrum (LPR): asymptotics in N = 32,256 at R fixed:

$$R=256$$
: λ_j for $N=256$ and Black mark $N=32$ red line $\pi(j)=(\lambda_j+\lambda_{N-j+1})/2$ for $N=256$ and marker for $N=32$; zoom

Scaling Lyapunov Spectrum: $8 \le R = 2^n \le 2048$

$$x = \frac{j}{N+1} \Rightarrow |\lambda(x) + \pi(x)| \sim c_{\lambda} |2x - 1|^{5/3} R^{2/3}$$
$$\sim |\lambda(x) + 1| \sim c_{\lambda} |2x - 1|^{5/3} R^{2/3}, \quad c_{\lambda} \sim 0.8$$

Blue: $|\lambda_j + 1|/(c_{\lambda}R^{2/3})$, Black: $|2j/(N+1) - 1|^{5/3}$

Dimension of Attractor

The $|\lambda(x) + 1| \sim c_{\lambda} |2x - 1|^{5/3} R^{2/3}$ yields the full spectrum: hence can compute the KY dimension

$$N - d_{KY} = \frac{N}{1 + c_{\lambda} R^{\frac{2}{3}}} \xrightarrow{R \to \infty} 0, \qquad \forall \ N$$

attractor has a dimension virtually indistinguishable from that of the full phase space.

However SRB distribution deeply different from equidistribution (often confused with ergodicity): made clear by the equivalence (if holding) and the validity of the Fluctuation Relation needs test

Reversible-Irreversible ensembles equivalence:

Black: pdf for M/N rev, R = 2048. Blue – pdf for M/N irrev for R = 2048. Red black + blue line. Note vertical scales.

Check Fluctuation Relation (FR)

$$p = \frac{1}{\tau} \frac{\int_0^{\tau} \sigma(x(t))dt}{\langle \sigma \rangle_{srb}}$$
$$\frac{1}{\tau \overline{\sigma}_R} \log \frac{P_{\tau}^R(p)}{P_{\tau}^R(-p)} = p \quad ???$$

F.R. slope
$$c(\tau) \xrightarrow[R \to \infty]{} 1$$
, $R = 512$

$$c(\tau) = 1 + \left(\frac{t_{dec,R}^{r,\sigma}}{\tau}\right)^{4/3} = 1 + \left(\frac{c_{\sigma}}{\tau}\right)^{4/3} R^{-8/9}$$

Check Fluctuation Relation

F.R. R=2048, approach 1 as $\tau\uparrow$ beyond decorrelation time

Local Fluctuation Relation

Local F.R. for R = 2048

$$\frac{1}{\tau}\log\frac{P_{\tau}^{R}(p)}{P_{\tau}^{R}(-p)} = \overline{\sigma^{\beta}}_{R}p + O(\tau^{-1}) = \beta\overline{\sigma}_{R}p + O(\tau^{-1})$$

Lyapunov exp. in reversible casereversible \equiv irrev

Same picture as the irreversible case: graphs overlap

Red: Lyap exps R = 2048. Magenta $(\lambda_j + \lambda_{N-j+1})/2$. Blue Lyaps R = 2048. Black: $(\lambda_j + \lambda_{N-j+1})/2$

Consequently Reversible pairing occurs.

Equivalent Ensembles (more) general theory

$$E(x)$$
 observable s.t. $\sum_{j=1}^{N} \partial_j E(x) (Lx)_j = M(x) > 0$ $x \neq 0$.
E.g. $L=1, \ E(x)=\frac{1}{2}\sum_j x_j^2, \Rightarrow M(x)=x^2$.

$$\dot{x}_j = f_j(x) + F_j - \nu(Lx)_j, \qquad \nu > 0, \ j = 1, \dots, N$$

$$\dot{x}_j = f_j(x) + F_j - \alpha(x)(Lx)_j, \qquad \alpha(x) \stackrel{def}{=} \frac{\sum_{j=1}^N F_j \partial_j E}{M(x)}$$

Dissipation balanced on $E(x) \Rightarrow E(x(t)) = const$

Define \mathcal{E} and $\widetilde{\mathcal{E}}$: conjectured is equivalence at large forcing (when both satisfy Chaotic hypothesis for $\langle \alpha(x(t))\alpha(x(0)) \rangle$ is finite).

Lorenz96 is one example

Other examples: NS equation (periodic container \mathcal{O})

with viscosity ν

$$\dot{\vec{u}} + (\vec{u} \cdot \boldsymbol{\partial})\vec{u} = -\boldsymbol{\partial}p + \vec{g} + \nu\Delta\vec{u} = 0, \quad \boldsymbol{\partial} \cdot \vec{u} = 0$$

and equivalent eq. balanced on the "dissipation" observable $E(\vec{u}) = \int_{\mathcal{O}} (\partial \vec{u}(x))^2 dx$

$$\begin{split} \dot{\vec{u}} + (\vec{u} \cdot \boldsymbol{\partial}) \vec{u} &= -\boldsymbol{\partial} p + \vec{g} + \alpha(\vec{u}) \Delta \vec{u}, \qquad \boldsymbol{\partial} \cdot \vec{u} = 0 \\ \alpha(\vec{u}) &\stackrel{def}{=} \frac{\sum_{\vec{k}} \vec{k}^2 \, \vec{g}_{\vec{k}} \cdot \vec{u}_{-\vec{k}}}{\sum_{\vec{k}} \vec{k}^4 |\vec{u}_{\vec{k}}|^2}, \qquad D = 2 \end{split}$$

If D = 3 similar expression (more involved because vorticity is not conserved in inviscid case)

 $\overline{N} = 168$: $R^2 = 10^6$; viscous NS (+), energy (*), enstr (\Box)

Lyap exps N = 168: $R^2 = 10^6$, force on $\pm (4, -3), \pm (3, -4)$ viscous (+) at force on $\pm (4, -3), \pm (3, -4)$ (×) = $(\lambda_k + \lambda'_k)/2$ energy (*) enstrophy (\boxdot), or palinstrophy (\blacksquare).

Runs lengths $T \in [125, 250]$, units of $1/\lambda_{max}$, λ_{max} .

Error bars identified with symbols size.

Overlap of the 4 spectra (approximate, because of numerical fluctuations in quantities that should be exact constants)

NS too \Rightarrow hints at extending equivalence to spectra.

References

Nonequilibrium and irreversibility.

Teoretical and Mathematical Physics. Springer-Verlag and http://ipparco.roma1.infn.it & arXiv 1311.6448, Heidelberg, DOI 10.1007/978-3-319-06758-2, 2014.

Equivalence of Non-Equilibrium Ensembles and Representation of Friction in Turbulent Flows: The Lorenz 96 Model.

Journal of Statistical Physics, **156**, 1027-1065, 2014, 156:1027-10653, 2014.

G. Gallavotti and E. Presutti.

Nonequilibrium, thermostats and thermodynamic limit. Journal of Mathematical Physics, 51:015202 (+32), 2010.