Renormalization group, Kondo effect and hierarchical models G.Benfatto, I.Jauslin & GG

1-d lattice, fermions+impurity, "Kondo problem"

$$H_{h} = \sum_{\alpha=\pm} \left(\sum_{\substack{x=-L/2\\x=-L/2}}^{L/2-1} \psi_{\alpha}^{+}(x) \left(-\frac{1}{2}\Delta - 1\right) \psi_{\alpha}^{-}(x) + h \varphi^{+} \sigma^{z} \varphi^{-} \right)$$
$$H_{K} = H_{0} + \lambda \sum_{\substack{\alpha,\alpha'=\pm\\\gamma,\gamma'=\pm}}^{3} \sum_{j=1}^{3} \psi_{\alpha}^{+}(0) \sigma_{\alpha,\alpha'}^{j} \psi_{\alpha'}^{-}(0) \varphi_{\gamma}^{+} \sigma_{\gamma,\gamma'}^{j} \varphi_{\gamma'}^{-} = H_{h} + V$$

ψ[±]_α(x), φ[±]_γ C&A operators, σ^j, j = 1, 2, 3, Pauli matrices
x ∈ unit lattice, -L/2, L/2 identified (periodic b.c.)
Δf(x) = f(x+1) - 2f(x) + f(x-1) discrete Laplacian.

If $\lambda = 0$ impurity-electrons independent: classic or quantum

$$\chi(\beta, h) \propto \beta \xrightarrow[\beta \to \infty]{} \infty, \qquad \forall \ L \ge 1, \ \beta h < 1$$

Interaction (classic) elec.+imp.: field on both & $\lambda \neq 0$

$$\chi(\beta,h) = 4\beta \frac{(1 + e^{-2\lambda\beta}\cosh\beta h)}{(\cosh 2\beta h + e^{-2\lambda\beta})^2} \xrightarrow[\beta \to \pm\infty]{0 \text{ repulsive}} +\infty \text{ attractive}$$

field on impurity only: $\chi(\beta, 0) = \beta \to \infty$ Reason: $\lambda < 0 \to$ rigidly antiparallel spins ????

Still true if $L < \infty$ classic&quantum or $L = \infty$ classic

XY model confirms (∞ both cases, exact)

Then Trivial? (0 repulsive, ∞ attractive ?) BUT

If $L = \infty$ quantum chain: new phenomena

1) at $\lambda = 0 \Rightarrow$ Pauli paramagnetism (1926) local or specific suscpt. $< \infty$ at $T \ge 0$:

$$\chi(\infty,0) = \rho \frac{1}{k_B T_F} \frac{d}{2}, \qquad (Pauli)$$

2) at fixed $\lambda < 0 \Rightarrow$ Kondo effect: susceptibility $\chi(\beta, h)$ smooth at T = 0 and $h \ge 0$

Kondo realized the problem (3^{*d*}-order P.T.) and gave arguments (1964) for $\chi < \infty$ (actually conductivity $< \infty$)

Anderson-Yuval-Hamann (1969,70) \Rightarrow multiscale nature of the problem, relation with the 1D Coulomb gas & solved the $\lambda > 0$ case (no Kondo eff.), & stressed that lack of asymptotic freedom = obstacle for $\lambda < 0$

Wilson (1974-75) overcame asymptotic freedom by discussing a somewhat modified model and finding a recursion scheme, numerically implementable in an appropriately simplified model.

The method built a sequence of approximate Hamiltonians (with finitely many coefficients) more and more accurately representing the system on larger and larger scales, leading to the Kondo effect via a nontrivial fixed point.

Evaluate $Z = \operatorname{Tr} e^{-\beta H_K}$ as a functional integral, (BG990). The free fields $\psi^{\pm}(x), \varphi^{\pm}$

$$\psi^{\pm}(x) = \sum_{m} e^{\pm ikx} \psi^{\pm[m]}(x), \ \varphi^{\pm} = \sum_{m} \varphi^{\pm[m]}(x)$$

can be decomposed into components of scale 2^{-m} , $m \in \mathbb{Z}$

$$\psi^{\pm}(x) = \sum_{m=0}^{-\infty} \sum_{\omega=\pm} e^{\pm i\omega p_f x} 2^{\frac{1}{2}m} \psi^{\pm[m]}_{\omega}(2^m x), \quad \varphi^{\pm} = \sum_{m=0}^{-\infty} \varphi^{\pm[m]}$$

quasi particles, neglecting the UV (*i.e.* $m \leq 0$). Then represent Z as a Grassmann integral. Fields become Grassman variables.

But since the impurity is localized observ. localized at 0 depend on fields at 0, $\psi^{\pm}(0), \varphi^{\pm} \Rightarrow 1D$ problem (AYH).

Key: response to field h acting on impurity site only depends on the propagators with x = 0.

By Wick \Rightarrow only average values, over "time" of propagators at x = 0 needed. Propagators on scale m are $g^{[m]}(t - t')$

$$\delta_{m,m'} \sum_{\omega} \int \frac{dk_0 dk}{(2\pi)^2} \frac{e^{ik_0(t-t')}}{-ik_0 + \omega e(k)} \chi(2^{-2m}(k_0^2 + k^2)),$$

$$\delta_{m,m'} \int \frac{dk_0}{2\pi} \frac{e^{i\sigma k_0(t-t')}}{-i\sigma k_0} \chi(2^{-m}\frac{k_0}{2\pi})$$

singularity at t - t' = 0 (UV sing.) and at $t - t' = \infty$ (IR sing.) regularized via χ on scale 2^{-m} ; $e(k) = -\cos k$.

Illustration of (AYH970) remark: 1D problem, (long range)

Main operators :
$$\vec{A}_x \stackrel{def}{=} \psi_x^+ \boldsymbol{\sigma} \psi_x^-, \vec{B}_x \stackrel{def}{=} \varphi^+ \boldsymbol{\sigma} \varphi^-$$

Interaction Ham. is constructed via the operators

$$O_0 = -\lambda^0 \vec{A} \cdot \vec{B}, \ O_1 = \lambda^1 \vec{A}^2, \ O_2 = \lambda^2 \vec{B}^2, \ O_3 = \lambda^3 \vec{A}^2 \vec{B}^2$$

 H_K on scale m = 0 is (with $\lambda^0 < 0$ and $\lambda^1 = \lambda^2 = \lambda^3 = 0$)

$$H_K = H_0 - \sum_{x} (\lambda^0 O_{x,0} + \lambda^1 O_{x,1} + \lambda^2 O_2 + \lambda^3 O_{x,3}) + \dots$$

Set RG analysis via (Grassmannian) as BG990 for $\text{Tr}e^{-\beta H_K}$ Scaling $O_0 = \text{marginal}, O_2 = \text{relevant}$

Difficulty is immediate: multiscale PT at h = 0 generates a power series with at least the above 4 running costants (λ_n) $n \leq 0$. Should be related by recurrence

$$\boldsymbol{\lambda}_n = \Lambda \boldsymbol{\lambda}_{n+1} + \mathcal{B}(\boldsymbol{\lambda}_{n+1}), \quad \lambda_0 = (-\lambda, 0, 0, 0)$$

with $\Lambda = (1, \frac{1}{2}, 2, \frac{1}{2})$ and \mathcal{B} is a formal series.

Even forgetting convergence, PT of no use: marginal term grows (if $\lambda_0 < 0$) and generates relevant term!

To understand a simpler problem turn to hierarchical model

The propagators $g^{[m]}(t-t')$ are constant for t > t' on scale $m, i.e. t, t' \in I_m = [n2^{-m}, (n+1)2^{-m}]$, antisymmetric in t, t' and fast decay on scale 2^{-m}

Hierarchical fields will be defined by assigning to each I_m two Grassmannians $2^{\frac{1}{2}m} z^{[m]}(t), \zeta^{[m]}(t)$

- 1) exactly constant in each half of I_m
- 2) propagator 1 for $t \in I_m^-, t' \in I_m^+, -1$ for $t \in I_m^+, t' \in I_m^-$
- 3) independent for $t \in I_m, t' \in I_{m'} \neq I_m$

$$\psi_{\alpha}^{[\leq m]\pm}(t) = 2^{\frac{m}{2}} \Big(z_{\alpha}^{[m]\pm}(t) + \frac{1}{\sqrt{2}} Z_{\alpha}^{[m-1]\pm} \Big),$$
$$\varphi_{\beta}^{[\leq m]\pm}(t) = \zeta_{\beta}^{[m]\pm}(t) + \Xi_{\beta}^{[m-1]\pm}$$

Hierarchy of lattice sites $[1, \ldots, 2^N]$: *i* intervals on scale 0

$$\psi_{\alpha}^{[\leq m]\pm}(t) = 2^{\frac{m}{2}} \left(z_{\alpha}^{[m]\pm}(t) + \frac{1}{\sqrt{2}} Z_{\alpha}^{[m-1]\pm} \right),$$

$$\varphi_{\beta}^{[\leq m]\pm}(t) = \zeta_{\beta}^{[m]\pm}(t) + \Xi_{\beta}^{[m-1]\pm}$$

where z, ζ are fields of scale m while $Z \in \Xi$ are constant on scale m (not m-1).

Falco Memorial 9/6/2015

9/19