
Comments on Ruelle’s analysis of
the OK41 turbulence theory (P. Garrido & GG)

Brief survey of OK41 (Obukov-Kolmogorov) on N-S

u̇k =− i
∑

k1+k2=k

u˜ k1
· k˜ 2Πkuk2

+ g
k
δ|k|=k0 k0 ≤ |k| ≤ kν

u̇k =− νk2uk − i
∑

k1+k2=k

u˜ k1
· k˜ 2Πkuk2

kν < |k| < k′ν

Scale length (k−1
0 ) “injection scale”

Scale length ≥ k−1
ν “inertial range: ν negligible, turbulence

Scale length in [k′−1
ν , k−1

ν ] “dissipation”: laminar motion

To determine kν ? Define
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Energy variation rate in modes at scales < σ−1:

Eσ def=
1

2

d

dt
L3

∑
|k|<σ−1

|uk|2 = L − Eσ,σ′ − Eσ,σ′,∞ + 0

L=forcing work (on scale k−1
0 ); 2L3Reḡ

k0

· uk0

Eσ,σ′= work on modes |k| < σ due to |k| ∈ [σ, σ′):

Eσ,σ′ = iL3
∑
|k3|<σ

( ∑
k1+k2+k3=0

|k1|∈[k0,σ
′), |k2|∈[σ,σ′]

u˜ k1
· k˜ 2 uk2

)
· uk3

Eσ,σ′,∞=work “modes |k| < σ from |k2| ∈ [σ′,∞) or
|k2| ∈ [σ, σ′), |k1| ∈ [σ′,∞)

0=internal work inside|k| < σ
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k1 k2

k1,k2

k1 k2

k1

k1 k2

Eσ,σ′ first, Eσ,σ′,∞ second and third, 0 fourth.

The second and third involve pairs of uk separated by the
gap.

0) Homogeneous turbulence: 〈 Eσ,σ′,∞ 〉 = 0 if σ and
σ′ = κσ are < kν, in asymptotic regime.

Provided κ large enough: to neglect exchanges btwn
noncontiguous scales. Hence Eσ,σ′ = L3ε constant.

Energy dissipated only on scales |k| > kν , “cascading”
without dissipation from large scales to small ones.
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ε can only depend on velocity vσ characteristic of lenfgth

scale σ and on σ: hence ε = v3
σ

σ

v2
σ

def
= 〈

( 1

∆σ

∫
∆σ

(u(x)− u(x0))dx
)2 〉

2) k-th FT of velocity var. assumed statistically indep,

3) Velocity var. in same scale boxes assumed stat. indep.

Then OK41 ⇒ energy is K(σ)dσ = const ε
2
3σ−

5
3

Reynolds num. on scale σ: Rσ = vσσ
ν

is (as v3
σ

σ
= const !)

Rσ =
vσσ

ν
=
vLL

ν
(
σ

L
)

4
3

The Kolmogorv scale is then defined by the scale at which
motion is laminar, i.e. Rσ = 1: this is

kν = σ−1
ν = L−1R

3
4

Dimension of attractor ∝ R
9
4
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As v3
σ

σ
= ε⇒ τp = 0

〈 vpσ 〉 = ε σ
p
3

(1+τp) ≡ ε κ−
n
3

(1+τp), σ = Lκ−n

Of course vσ fluct., observably, ⇒ τp 6≡ 0: except for p = 1.

Why? Ruelle, [3, 4] :
0) v3

σ/σ be a r.v. with constant average on scale σ = κ−n

1) In a box ∆σ there are κ3 boxes of scales σ
κ∫

v3
nP (vn|vn−1)dvn ≡ κ−1 v3

n−1, constraint

2) which one? “Boltzmannian”: i.e. maximizing entropy
under constraint

∫
(− logP (v|w)− λv3)P (v|w)dv = max⇒

Wn
def
= v3

n, P (Wn|Wn−1) = e
− κWn
Wn−1

κdWn

Wn−1
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Pr(dW ) =
n∏

m=0

κm∏
i=1

dWi,m+1

κWi′m
e
−
Wi,m+1
κWi′,m

Predictions? if σn
def
= κ−n

〈 vpn 〉 = κ−
np
3 κ−nτp , τp = − log Γ(1 + p)

log κ

One free parameter: κ. Experimental data ∃ for p < 18:

Fit gives κ ∼ 22, “very large” (!?).

Surprising: ⇒ at “moderate” R’s the number of scales to
reach K-scale can be calculated and is at most 2 (i.e. 3, 4
exist but are very rare).

Recall that this all started from the new finding
(Schumacher et al.) that universality starts being manifest
already at small Re.
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Distribution of events that reach the Kolmogorov scale κ−n for different values of the

Reynold’s numbers R and κ = 22. The total number of events is 1012.
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Another quantity measured (simulations) is “radial”
velocity component distribution at Kolmogorov scale (or at
any inertial scale where Re goes below a prefixed treshold):

n(W ) = first i s.t.Ri =
W

1
3
i

κ−i
≡ vi
κ−i

< 1

κ−i is the K. scale. Ask probability dens. that at the K.
scale radial velocity vi cos θ

〈 v2
i cos2 θ 〉

1
2
∈ [z, z + dz]

p(z) =
1

2
µ

1
2
2 P (µ2|z|)

In (Schumacher et al, 2014) it was found
1) the p(z) is Gaussiann at low Re.
2) but at moderate Re. log p(z) develops a linear tail
3) achieved via impressive simulations
Ruelle’s distribution tests the above result
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log10 p(z) distribution for different Reynold’s numbers.
Center: a(1259.92) = −0.08, a(1442.25) = −0.12, a(1587.40) = −0.24, a(1709.98) = −0.52.

Right: a(3684.03) = −0.51, a(4121.29) = −0.55, a(4621.59) = −0.58,

a(5848.04) = −0.61,a(7937.01) = −0.64.
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p(z) by Schumaher et al. for varying Re.’s
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Flatness (σ4/σ
2
2) compared to Schumaher et al. [2] varying Re.’s
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Computation of P ∗(ξ) is a problem on extreme events

W
1
3
n κ

n ≡ W
1
3

0 w1w2 . . . wn, wk =
κkWk

κk−1Wk−1

Pn(dw1, . . . dwn) =
n∏
i=1

p(wi)dwi

for i.d. random variables; extreme event, ∗, is

logW0

3
+ ϕ

m∑
i=1

logwi > 0 ∀m < n

&&
logW0

3
+

n∑
i=1

logwi < 0

with probability:

P ∗(ξ) =
∞∑
n=1

∫ ∗
Pn(dw)δ(

n∑
i=1

logwi − ξ)

If p(w) is not faster than exp., as in R, analysis of P ∗

involves the Gumbel distribution Φ(t) = e3t−e3t
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It should also be true (?) that if values of n really matter
(i.e. at much larger Re.)

no matter which p(w) is used
provided with exponential tail

the result will be the same as with R’s p(w) = e−wdw.

If so the “Boltzmannian prescription” would be set in a
conceptually general perspective,

And the universality of the tails of the dissipation-pdf, i.e.

pdf of v3
σ

σ
in the inertial range may be perhaps more clear.
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