Comments on Ruelle’s analysis of
the OK41 turbulence theory (P. Garrido & GGQG)

Brief survey of OK41 (Obukov-Kolmogorov) on N-S
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Scale length (k') “injection scale”
Scale length > k! “inertial range: v negligible, turbulence
Scale length in [k)", k1] “dissipation”: laminar motion
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Energy variation rate in modes at scales < o~ !

adefld 3 2
SRS T SR R

|kl<o—t
L=forcing work (on scale ky'); 2L3Regk oy,

Esv= work on modes |k| < o due to |k| € [0,07):
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|ks|<o kq1+ko+k3z=0
|kil€lkg,a”), |kal€lo,0']

Eo o co=work “modes |k| < o from |k,| € [0, 00) or
|ko| € lo,07), |k, | € [0, 00)

O=internal work inside|k| < o

Rutgers 15-10-2015 2/14



ki, ko

O

ko ki
Sayﬂ/ first, 50,0'/,00 second and third, O fourth.
The second and third involve pairs of u, separated by the
gap.
0) Homogeneous turbulence: (&, , ) =0 if 0 and
o' = ko are < k,, in asymptotic regime.

Provided k large enough: to neglect exchanges btwn
noncontiguous scales. Hence &, ,» = L3¢ constant.

Energy dissipated only on scales |k| > k,, “cascading”
without dissipation from large scales to small ones.
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¢ can only depend on velocity v, characteristic of lenfgth
3
scale o and on o: hence ¢ = =

(5 [ ) - ula)do))

Ao
2) k-th FT of velocity var. assumed statistically indep,

3) Velocity var. in same scale boxes assumed stat. indep.
Then OK41 = energy is K (0)do = const c30 3
Reynolds num. on scale : R, = “=7 is (as % = const !)
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The Kolmogorv scale is then defined by the scale at which

motion is laminar, i.e. R, = 1: this is

4
3

k, =0, = L7'Ri

. . 9
Dimension of attractor o< R4
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As 2 =ec= 7,=0
P _n _
<Ug> — 50-3(1+T[’) = ek 3(1+Tp)’ o= LK/ n

Of course v, fluct., observably, = 7, # 0: except for p = 1.
Why? Ruelle, [3, 4] :

0) v2/o be a r.v. with constant average on scale ¢ = k™"

1) In a box A, there are £ boxes of scales 2

n—1»

/viP(vnwn_l)dvn =x 103 constraint

2) which one? “Boltzmannian”: i.e. maximizing entropy
under constraint [(—log P(v|w) — Av*)P(v|w)dv = max =

_ kWn dW
Wn déf U?w P(Wn|Wn—1) =e "n-1 %
n—1
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Predictions? if o, £ K™

logI'(1 + p)
log K

() =k~ FK ", 7=

One free parameter: x. Experimental data 3 for p < 18:
Fit gives r ~ 22, “very large” (17).

Surprising: = at “moderate” R’s the number of scales to
reach K-scale can be calculated and is at most 2 (i.e. 3,4
exist but are very rare).

Recall that this all started from the new finding
(Schumacher et al.) that universality starts being manifest
already at small Re.
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[R=4121.3] [R=4641.6] [R=5848.0]

Distribution of events that reach the Kolmogorov scale k"™ for different values of the

Reynold’s numbers R and k = 22. The total number of events is 1012,
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Another quantity measured (simulations) is “radial”
velocity component distribution at Kolmogorov scale (or at
any inertial scale where Re goes below a prefixed treshold):

W3 (5

n(W) = first i s.t.R; = 4
K K"
k" is the K. scale. Ask probability dens. that at the K.

scale radial velocity —%%% ¢ [z 2 + d2]
(vZ cos?6)2

1 1
p(z) = 53 Plual])

n (Schumacher et al, 2014) it was found

1) the p(z) is Gaussiann at low Re.

2) but at moderate Re. logp(z) develops a linear tail
3) achieved via impressive simulations

Ruelle’s distribution tests the above result
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log1g p(z) distribution for different Reynold’s numbers.
Center: a(1259.92) = —0.08, a(1442.25) = —0.12, a(1587.40) = —0.24, a(1709 98) = —0.52.
Right: a(3684.03) = —0. 51, a(4121.29) = 0. 55, a(4621.59) = ~0.58

a(5848.04) = —0.61,a(7937.01) = —0.64.

Rutgers 15-10-2015 9/14



Re=129
-1t HIT Re=380
- Re=1074
_ Re=2243
3 -3 - - - Gauss
=
g -4
-5
-6
0 0 0 20
2=0v /0.v)
)
Co
Re=97
-1t RBC Re=448
2 Re=1489
. Re=4648
3 -3 - - - Gauss
=
g -4
-5
-6
-7

20

-10 0
z=axvxl(a V)

x'x'ms.

p(z) by Schumaher et al. for varying Re.’s
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Computation of P*(£) is a problem on extreme events
k
K Ll/k

1 1
i1

Wi k" = Wiwiws ... w,, Wk = ——
K Iﬂ/k__l

P, (dwy, . ..dw,) = H p(w;)dw;
i=1

for i.d. random variables; extreme event, *, is

log W, "
ogS 0+g0ﬁz/llogw,;>0Vm<n
1 17 n
&& Og3 2+ Zlogwi <0
with probability: i=1

PO=Y [ Py ogui-¢)

If p(w) is not faster than exp., as in R, analysis of P*
involves the Gumbel distribution ®(t) = e3¢
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It should also be true (7) that if values of n really matter
(i.e. at much larger Re.)

no matter which p(w) is used
provided with exponential tail

the result will be the same as with R’s p(w) = e~ "“duw.

If so the “Boltzmannian prescription” would be set in a
conceptually general perspective,

And the universality of the tails of the dissipation-pdf, i.e.
3
pdf of “= in the inertial range may be perhaps more clear.
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