Renormalization group, Kondo effect and hierarchical models G.Benfatto, I.Jauslin & GG

1-d lattice, fermions+impurity, "Kondo problem"

$$H_{h} = \sum_{x=-L/2}^{L/2-1} \psi^{+}(x) \left(-\frac{1}{2}\Delta - 1\right) \psi^{-}(x) + h \tau^{z}$$
$$H_{K} = H_{0} + \lambda \psi^{+}(0)\sigma^{j}\psi^{-}(0)\tau^{j} = H_{h} + V$$

(1) ψ[±]_α(x) C&A operators, σ^j, τ^j, j = 1, 2, 3, Pauli matrices
 (2) x ∈ unit lattice, -L/2, L/2 identified (periodic b.c.)
 (3) Δf(x) = f(x+1) - 2f(x) + f(x-1) discrete Laplacian.

No interaction ($\lambda = 0$): 1 impurity and $\beta h < 1$ (e.g. h = 0)

$$\chi(\beta,h) \propto \beta \xrightarrow[\beta \to \infty]{} \infty, \qquad \forall \ L \ge 1, \ \beta h < 1$$

Interaction (classical) 1 elec.&1 impurity: 1) field on impurity & $\lambda \neq 0$

$$\chi(\beta, 0) = 0$$
 repulsive, $+\infty$ attractive

2) Still true if $L < \infty$ classic&quantum or $L = \infty$ classic Reason ????: $\lambda < 0 \rightarrow$ rigidly antiparallel spins Then Trivial? (0 repulsive, ∞ attractive ?) BUT

If $L = \infty$ quantum chain: new phenomena

1) no impurity: \Rightarrow Pauli paramagnetism (1926) local (or specific) magnetic suscept. $< \infty$ at T > 0:

$$\chi(\infty,0) = \rho \frac{1}{k_B T_F} \frac{d}{2}, \qquad (Pauli)$$

2) at fixed $\lambda < 0 \Rightarrow$ Kondo effect: susceptibility $\chi(\beta, h)$ smooth and > 0 at T = 0 and $h \ge 0$

Kondo realized the problem (3^{*d*}-order P.T.) and gave arguments (1964) for $\chi < \infty$ (actually conductivity $< \infty$)

Anderson-Yuval-Hamann (1969,70) \Rightarrow multiscale nature, relation with 1D Coulomb gas & (no Kondo eff. $\lambda > 0$), &

& stress lack of asymptotic freedom = obstacle for $\lambda < 0$. Later Andrei (1980) provided an exact solution of a closely related model.

Earlier Wilson (1974-1975) had overcome lack of asympt. freedom: simplified model and a recursion scheme, $\frac{1}{2}$ -numerically.

Method builds sequence of approximate Hamiltonians more and more accurately representing the system on larger and larger scales, with Kondo effect via a nontrivial fixed point.

Evaluate $Z = \operatorname{Tr} e^{-\beta H_K}$ via Wick's rule.

$$Z = \operatorname{Tr}\left\langle \sum_{n=0}^{\infty} (-1)^n \int_{0 < t_1 < \dots < t_n < \beta} dt_1 \cdots dt_n V(t_1) \cdots V(t_n) \right\rangle$$
$$V(t) \stackrel{def}{=} -\lambda_0 \psi^+(t) \sigma^j \psi^-_{\alpha_2}(t) \tau^j - h \, \boldsymbol{\omega}_j \tau^j$$

Averages of observables depending only on the site 0 (*e.g.* impurity susceptibility) require by Wick \Rightarrow only Feynman graphs with propagators at x = 0: g(t - t'):

$$g(t-t') = \sum_{\omega=\pm} \int \frac{dk_0 dk}{(2\pi)^2} \frac{e^{ik_0(t-t')}}{-ik_0 + \omega k} \chi(k_0^2 + k^2),$$

here a first simplification: cut-off of the large k, k_0 and linear dispersion relation $\pm k$ at the Fermi level k = 0). The multiscale decomposition of g

$$g(t - t') = \sum_{m=0}^{-\infty} 2^m g_0(2^m(t - t'))$$

exhibits the scaling properties of g: namely the long range $\sim \frac{1}{t-t'}$ decomposed as a sum of short range propagators identical up to scaling.

The hierarchical model introduces a further simplification

 g_0 looses translation invariance but the propagator g keeps the multiscale and long range properties of the initial model, at least hierarchically

But since the impurity is localized observ. localized at 0 depend on fields at 0, $\psi^{\pm}(0), \varphi^{\pm} \Rightarrow \mathbf{1D}$ problem (AYH).

Illustration of (AYH970) remark: 1D problem, (long range) Main operators in the Lagrangian:

$$O_0(t) \stackrel{def}{=} \psi^+(t)\boldsymbol{\sigma}\psi^-(t) \cdot \boldsymbol{\tau} = \vec{A}(t) \cdot \boldsymbol{\tau}, \qquad O_5(t) \stackrel{def}{=} \boldsymbol{\tau} \cdot \boldsymbol{\omega}$$

(in Grassmannian form) and \mathcal{L}_K on scale m is (with $\alpha_0 < 0, \alpha_5 = h \ge 0$ else 0).

$$\int e^{\mathcal{L}_{K}^{[<=m]}(\psi^{[\leq m]}]} d\psi = \int e^{-\int_{0}^{\beta} \sum_{i} \alpha_{i}^{[m]} O_{i}(t) dt} d\psi^{[0]} d\psi^{[1]} \dots d\psi^{[m+1]}$$

Set RG analysis via (Grassmannian) for $\operatorname{Tr} e^{-\beta H_K}$

Key: IF h = 0 then $\mathcal{L}_{K}^{[m]}(t)$ is $\forall m$:

$$\alpha_0^{[m]}O_0(t)\cdot\boldsymbol{\tau} + \alpha_1^{[m]}O_1(t)$$

i.e. no new operators needed at any scale (exact recursion) Rutgers 12/5/2015 7/16 Scaling $O_0 =$ marginal, O_1 irrelevant, $O_5 =$ relevant

The RG consists in

1) Expand perturbatively $Z^{[>m]} = e^{V^{[m]}}$ via Feynman gr. heavily using the hierarchical structure

3) Recognize: at h = 0 no new operators can arise besides

$$O_4 = \vec{A} \cdot \vec{h}, \ O_5 = \boldsymbol{\sigma} \cdot \vec{h}, \ O_6 = \vec{A} \cdot \vec{h} \, \boldsymbol{\sigma} \cdot \vec{h}, O_7 = \vec{A}^2 \boldsymbol{\sigma} \cdot \vec{h},$$

3) Recognize that the result contains a few series that can collected to form a sequence of running couplings

$$\boldsymbol{\alpha}^{[m]} = (\alpha_0^{[m]}, \alpha_1^{[m]}, \alpha_4^{[m]}, \alpha_5^{[m]}, \alpha_6^{[m]}, \alpha_7^{[m]}).$$

with only $\alpha_0^{[m]}, \alpha_1^{[m]} \neq 0$ if h = 0

4) Each is a convergent series in the initial couplings α_0, h , if small enough (BUT converg. radius *m* dependent)

5) Recognize that the $\boldsymbol{\alpha}^{[m]}$ satisfy a formal recursion

$$\boldsymbol{\alpha}^{[m]} = \Lambda \boldsymbol{\alpha}^{[m+1]} + \mathcal{B}(\boldsymbol{\alpha}^{[m+1]})$$

and \mathcal{B} can be expressed as a "polynomial" with coefficients which are geometric series in $\boldsymbol{\alpha}^{[m+1]}$; $\Lambda = (1, \frac{1}{2}, 1, 2, 1, \frac{1}{2})$.

Even forgetting convergence, PT of no use: marginal term grows (if $\lambda_0 < 0$) and generates growing ("relevant" terms)!

6) Sum the geometric series to obtain a closed from of \mathcal{B} . After a natural change of variables $\alpha \leftrightarrow \lambda$ at h = 0

$$\lambda_0' = \frac{1}{C} (\lambda_0 + 3\lambda_0\lambda_1 - \lambda_0^2) \lambda_1' = \frac{1}{C} (\frac{1}{2}\lambda_1 + \frac{1}{8}\lambda_0^2), C = 1 + \frac{3}{2}\lambda_0^2 + 9\lambda_1^2$$

Non perturbative: for $m \to -\infty$ (IR limit, $\beta = +\infty$, T = 0) $\lambda^{[m]}, \alpha^{[m]}$ converge to non trivial fixed point if $h = 0, \alpha_0 < 0$, exactly computable, $\lambda_0^* = -7.807257...10^{-1}, \lambda_1^* = 5.292875...10^{-2}$ $\lambda_0^* = -x \frac{1+5x}{1-4x}, \ \lambda_1^* = \frac{x}{3}, \ x = 7.807257...10^{-1},$ with $4 - 19x - 22x^2 - 107x^3 = 0$, real root.

Susceptibility: new operators needed to close beta

$$O_4 = \vec{A} \cdot \vec{h}, \ O_5 = \boldsymbol{\sigma} \cdot \vec{h}, \ O_6 = \vec{A} \cdot \vec{h} \, \boldsymbol{\sigma} \cdot \vec{h}, O_7 = \vec{A}^2 \boldsymbol{\sigma} \cdot \vec{h},$$

 O_0, O_4, O_6 marginal, O_5 relevant, O_1, O_7 irrelevant Calculating beta function: via Feynman graphs, after simplifications, a beta function with 36 coeff is found From the flow of the α the partition function $Z(\beta, h)$ is computed and susceptibility

$$\chi(\beta,h) = \partial_h^2 \log Z(\beta,h)$$

follows as a function of h.

The beta function is a rational function defined by the ratio of two polynomials of degree 2.

$$C = 1 + \lambda_0^2 + \frac{1}{2}(\lambda_0 + \lambda_6)^2 + 9\lambda_1^2 + \frac{1}{2}\lambda_4^2 + \frac{1}{4}\lambda_5^2 + 9\lambda_7^2$$

$$\lambda_0' = \frac{1}{C}(\lambda_0 - \lambda_0^2 + 3\lambda_0\lambda_1 - \lambda_0\lambda_6)$$

$$\lambda_1' = \frac{1}{C}(\frac{1}{2}\lambda_1 + \frac{1}{8}\lambda_0^2 + \frac{1}{12}\lambda_0\lambda_6 + \frac{1}{24}\lambda_4^2 + \frac{1}{4}\lambda_5\lambda_7 + \frac{1}{24}\lambda_6^2)$$

$$\lambda_4' = \frac{1}{C}(\lambda_4 + \frac{1}{2}\lambda_0\lambda_5 + 3\lambda_0\lambda_7 + 3\lambda_1\lambda_4 + \frac{1}{2}\lambda_5\lambda_6 + 3\lambda_6\lambda_7)$$

$$\lambda_5' = \frac{1}{C}(2\lambda_5 + 2\lambda_0\lambda_4 + 36\lambda_1\lambda_7 + 2\lambda_4\lambda_6)$$

$$\lambda_6' = \frac{1}{C}(\lambda_6 + \lambda_0\lambda_6 + 3\lambda_1\lambda_6 + \frac{1}{2}\lambda_4\lambda_5 + 3\lambda_4\lambda_7)$$

$$\lambda_7' = \frac{1}{C}(\frac{1}{2}\lambda_7 + \frac{1}{12}\lambda_0\lambda_4 + \frac{1}{4}\lambda_1\lambda_5 + \frac{1}{12}\lambda_4\lambda_6)$$

Fig.2: plot of $\frac{\lambda_i}{\lambda_i^*}$, i = 0, 1, as a function of $N_\beta = \log_2 \beta$, $\lambda_0 \equiv \alpha_0 = -0.1, -0.01$ respectively the left and the right pairs.

Fig.3: inflection point $n_0(\lambda_0)$: $n_0(\lambda_0) \cdot |\lambda_0|$ vs. $|\log_2 |\lambda_0||$: only data with 10% error (upper and lower curves) visual lines interpolate data

$$T_K = const e^{-c_0 \lambda_0^{-1}}$$

For $h \neq 0$ the flow leads to "high T fixed pt." at scale $\propto 1/|\log h|$

The equation of state

Fig.4: plot of $\chi(\beta, h)$ for $h \in [0, 10^{-6}]$ at $\lambda_0 = -0.3$ and $\beta = 2^{20}$ (so that the largest value for βh is ~ 1) [1, 2, 4, 3, 5]

Rutgers 12/5/2015

15/16

References

G. Benfatto and G. Gallavotti.

Perturbation theory of the Fermi surface in a quantum liquid. a general quasi particle formalism and one dimensional systems.

Journal of Statistical Physics, 59:541-664, 1990.

G. Benfatto and G. Gallavotti.

Renormalization group approach to the theory of the Fermi surface.

Physical Review B, 42:9967-9972, 1990.

G. Benfatto, G. Gallavotti, and I. Jauslin.

Kondo effect in a fermionic hierarchical model.

Journal of Statistical Physics, 161:1203–1230, 2015.

T.C. Dorlas.

Renormalization group analysis of a simple hierarchical fermion model.

Communications in Mathematical Physics, 136:169–194, 1991.

G. Gallavotti and I. Jauslin.

Kondo effect in the hierarchical s - d model.

Journal of Statistical Physics, 161:1231-1235, 2015.

http://arxiv.org & http://ipparco.roma1.infn.it and:

http://ian.jauslin.org/publications/