Renormalization group, Kondo effect and hierarchical models
G.Benfatto, I.Jauslin & GG

1-d lattice, fermions+impurity, “Kondo problem”

L/2—1

Hi= 3 o) (~3A— Dy (@) +h

x=—L/2
Hyg =Hy + M (0)o?y=(0) 7/ = Hy+V

(1) wE(x) C&A operators, 07,77, j = 1,2, 3, Pauli matrices
(2) x € unit lattice, —L/2, L/2 identified (periodic b.c.)
(3) Af(x) = f(x+1)—2f(z) + f(x — 1) discrete Laplacian.
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No interaction (A = 0): 1 impurity and gh <1 (e.g. h =0)

X(B,h) o< B 500,  VL=1 Bh<l1

Interaction (classical) 1 elec.&1 impurity:
1) field on impurity & A # 0

X(8,0) =0 repulsive, +o0o attractive

2) Still true if L < oo classic&quantum or L = oo classic

Then Trivial? (0 repulsive, oo attractive ?)
BUT
If L = oo quantum chain: new phenomena
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1) no impurity: = Pauli paramagnetism (1926)
local (or specific) magnetic suscept. < oo at T'> 0 :

1 d

=p—— Pauli
iy (Pauli)

x(0,0)

2) at fixed A < 0 = Kondo effect:
susceptibility x (5, k)
smooth and >0 at T"=0and h >0
Kondo realized the problem (3%-order P.T.) and gave
arguments (1964) for x < oo (actually conductivity < co)

Anderson-Yuval-Hamann (1969,70) = multiscale nature,
relation with 1D Coulomb gas & (no Kondo eff. A > 0), &

Rutgers 12/5/2015 3/16



& stress lack of asymptotic freedom = obstacle for A < 0.
Later Andrei (1980) provided an exact solution of a closely
related model.

Earlier Wilson (1974-1975) had overcome lack of asympt.
freedom: simplified model and a recursion scheme,
%—numerically.

Method builds sequence of approximate Hamiltonians more
and more accurately representing the system on larger and
larger scales, with Kondo effect via a nontrivial fixed point.

Evaluate Z = Tre ?Hx via Wick’s rule.

Z=Tr <i(—1)"/ dty - dt, V(t) - --V(tn)>

0 0<t1<--<tn<f

V() — xwt ()i, (8) 7 — hw,r!
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Averages of observables depending only on the site 0 (e.g.
impurity susceptibility) require by Wick = only Feynman
graphs with propagators at x =0 : g(t —t):

glt — 1) }:/ﬂmﬂjéwt” (K2 + k),

—lko + /{?

here a first simplification: cut-off of the large k, ky and
linear dispersion relation +k at the Fermi level k& = 0).
The multiscale decomposition of g

gt —t) }:2m (2™ (t — ')

exhibits the scaling properties of ¢g: namely the long range
~ t, decomposed as a sum of short range propagators
identical up to scaling.
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The hierarchical model introduces a further simplification

gt —t) Z?m (2"(t = 1))
go(t, 1) :0 unlebb t,t' ek, k+1]

1 iftelkk+iland ¢ € [k+ 3, K]
-1 if ¢ elk,k+iland t € [k+ 3, K

go(t,t") =0 otherwise

gO(tv t/) =

t/ t/

+1 0 /0

0 -1 0

t t
go looses translation invariance but the propagator g keeps

the multiscale and long range properties of the initial
model, at least hierarchically
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But since the impurity is localized observ. localized at 0
depend on fields at 0, *(0), p* = 1D problem (AYH).

lustration of (AYH970) remark: 1D problem, (long range)
Main operators in the Lagrangian:
def

Oo(t) = V* (o™ () -7 = At) -7, Os(t)
(in Grassmannian form) and
L on scale m is (with ag < 0, a5 = h > 0 else 0).

/ eCR MW gy = / e Jo Tiol MO dt g0l gupl1] | yplm+1

def
=T w

Set RG analysis via (Grassmannian) for Tre #7x

Key: IF h =0 then E[IT("] (t) is Vm:

a0y (t) - T + ™0 (1)

i.e. no new operators needed at any scale (exact recursion)
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Scaling Oy = marginal, O irrrelevant,O5 = relevant

The RG consists in

ylm]

1) Expand perturbatively Z Bml — ¢ via Feynman gr.

heavily using the hierarchical structure

2) Decompose propagators as y > 2™ go(2"(t —t')
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3) Recognize that the result contains a few series that can
collected to form a sequence of running couplings

a[m] = (agmly O‘[lm}v az[Lm]v a[5m]v Oégn]

with only o™, ol™ £ 0if h =0

[m])‘

,067

4) Each is a convergent series in the initial couplings ayp, /,
if small enough (BUT converg. radius m dependent)

5) Recognize that the o™ satisfy a formal recursion

a[m] _ Aa[m+1] +B<a[m+1])

and B can be expressed as a “polynomial” with coefficients

which are geometric series in o™, A = (1, %, 1,2,1, %)

Even forgetting convergence, PT of no use: marginal term
grows (if \p < 0) and generates growing (“relevant” terms)!
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6) Sum the geometric series to obtain a closed from of B.
After a natural change of variables a+— X at h = 0

1
1 (1
C"2

3
C =1+ §A3 + 9A]

A= AL+ < )\2)

Non perturbative: for m — —oo (IR limit, § = +o0, T' = 0)
A qlml converge to non trivial fixed point

if h =0, a9 < 0, exactly computable,

Ny = —7.807257...1071, \j = 5.292875...10~2

1+ 5z T

Moo= —o—2 \* =2 1 ="7807257...10},
0 x1_4m, 1 3,$ 7.807257...107 7,

with 4 — 192 — 2222 — 10723 = 0, real root.
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Susceptibility: new operators needed to close beta
Oy=A-h, Os=0-h, Og=A-ho h,0; = A% - b,

0o, O4, Og marginal, Oy relevant, Oy, Oy irrelevant

Calculating beta function: via Feynman graphs, after
simplifications, a beta function with 36 coeff is found

From the flow of the a the partition function Z(3, h) is
computed and susceptibility

X(B,h) = 9 log Z(B, h)
follows as a function of h.

The beta function is a rational function defined by the ratio
of two polynomials of degree 2.
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1 1 1
C=1+A+ §(>\0 + X6)” + 9N} + §Ai + —AZ +9X2

Ay =

/\/

Ay

s

A6

A7 =
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Fig.2: plot of %, i = 0,1, as a function of Ng = log, 3,
Ao = g = —0.1:—0.01 respectively the left and the right pairs.
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Fig.3: inflection point ng(Xg): no(Xg) - [Ao| vs. |logy [Agl|: only data with 10% error (upper

and lower curves) visual lines interpolate data

-1
Ty = const e~

For h # 0 the flow leads to “high T fixed pt.” at scale
x 1/|1log hl
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The equation of state
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Fig.4: plot of x(3,h) for h € [0,107%] at A\g = —0.3 and
B =22 (so that the largest value for Bh is ~ 1)
1, 2,4, 3, 5]
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