
SRB & Boltzmann’s distributions:
hyperbolicity, ergodic hypothesis, ensembles

Basic assumption (“chaotic hypothesis”) refers to
equilibrium and nonequilibrium phenomena alike: once a
system undergoes chaotic motions it shows them in a
maximal sense: ⇒ to be intended, for the purpose of
modeling its behavior, an “Anosov system”, [1].

Trivial to exhibit counterexamples: e.g.the horocyclic flow
on a surface of constant < 0 curvature, [2].

However keep in mind that Statistical Mechanics developed
from (Boltzmann, Clausius, Maxwell) supposing periodicity
of the microscopic motions, [3, 4, 5, 6],

Chaotic system admits (uncountably) many invariant
distributions on their microscopic configurations; how do
the ones relevant for Physics emerge?, [7, 8, 9]
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Boltzmann realized the problem in 1871, [10], casting
doubts on his early derivation (1868, [11]) of the microc.
ensemble; resolved them essentially via ergodic hypothesis.

It became soon dubious whether phase space volume
invariance (Hamiltonian) is of any help: many attempts to
connect micr. evolution with macr. properties via “coarse
grained” representations have met difficulties (hyperbolic
nature ⇒ strong phase space cells in deformation).

In stationary states out of equilibrium volume invariance
not even true. And the many invariant distr. are all
(strongly) mixing ⇒ difficult to see how the Boltzmann or
SRB distr. could emerge as the ones relevant for Physics,
[7, 8].

Physics: hyperbolicity, (restrict to maps for simplicity and
assume chaotic hypothesis), is essential to establish a
coherent notion of “coarse grain” descriptions, [12, 13, 6].
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Let (M,S) : be a smooth Anosov map S on the phase space
M and let E = (E1, . . . , En) be a “Markov partition” of M

s

Ei

u u

s

S Ei

A Ei ∈ E transformed into SEi s,t, shrinking part of
boundary ends up exactly on boundary of some among
E1, E2, . . . , En. E chosen “fine enough” for the few
interesting observables to be constant in each cell Ei.

⇒ symbolic represent. of motion: points → symbols
σ = (σi)

∞
−∞ with Mσi,σi+1

= 1 determined by “transition
matrix” Mσ,σ′ = 0, 1 (transitive, i.e. ∃n : (Mn)σ,σ′ > 0 ).

“Ergodic hypothesis”, classical, phase space discretized on
regular lattice R3N

δq ×R3N
δp , of meshes δq, δp, and
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in confined Ham. sys. motion ←→ one cycle permutation of
the (finite) set of points on given energy surface.

But conservative motions not required although, in general,
e.g.out of equilibrium, evolution cannot be cyclic
permutation. Points will be divided into transient and
recurrent: and the natural extension of the ergodic
hypothesis ⇒ all recurrent points are on a single cycle.

E(q)

Evolution drives to unstable manifolds of attracting set.

Points of the discrete attracting set will be imagined
located on a selected unstable manifold
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After a transient, attractor will appear as union of unstable
manifolds.

Probability of each element of E will simply be the number
of points of the attractor in it, since motion is simply
1-cycle perm. of attractor points.

Statistics is uniquely determined and just uniform distr. on
the attractor points. Unification: Equil&Noneq.

Let σE = surface of attractor unstable surfaces (after
discretization) inside E and NE =number of attractor
points on it. The condition of invariance of the attractor ⇒
consistency on the NE i.e. on the weights wE.

If “cell” Ei receives points from Ei′ (SEi′ ∩ Ei 6= ∅) and the
attractor surface is expanded by a factor Λ(i′) it must be

NEi
=
∑

i′→i

Λ(i′)−1
NE′

i

σEi′

σEi
⇒ wi =

∑

i′→i

Λ(i′)−1wi′
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An equation that could be formulated without reference to
a discretization: ⇒ stationary distribution has density on
unstable manifolds 1-quely determined by expansion rates,
(RPF operator, [7, 8]).

Question: “what happened to the other (uncountably
many) invariant distrib. of the continuum map (M,S)?”

Discretization has been done via a regular lattice. Using
different discretizations the result would be different and
other invariant distributions would arise, in the continuum
limit, for the considered system (M,S) and 6= SRB.

Relevance of the SRB distributions is tightly related, [6], to
structure of space-time: representability of natural laws via
ODE or PDE and via corresponding simulations, is,
ultimately, possible because a model of natural laws can be
equivalently built on microscpically discrete and regular
arrays or on Euclidean continua (a natural law itself).
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Such representability makes possible and useful the modern
simulations: agreement with observations of simulation
results can be seen as a confirmation of a natural law,
As quite explicitly invoked by Boltzmann, e.g.[14, p.169]:

Therefore if we wish to get a picture of the continuum in
words, we first have to imagine a large, but finite number of
particles with certain properties and investigate the behavior
of the ensemble of such particles ... one can then assert
that they apply to a continuum, and in my opinion this is
the only non-contradictory definition of a continuum with
certain properties

Ergodicity does not solve the supposed conflict between
micr. reversibility and macr. irreversibility.

However Boltzmann (and others, e.g.Thomson) had clearly
reconciled the two and estimated the minimal time scale on
which reversibility could be detected, [15, 16].
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The idea of a rather general explanation of the nature of
micr. motion, that inspired the founding fathers, is that a
general explanation might imply general consequences
directly accessible on human time scales, [13].

A micr. property for rather arbitrary systems subject to
basic laws of nature (e.g.classical mechanics) might be
uninteresting in the case of systems with few particles but
it might turn out to be a fundamental law for many
particle systems.

The example of the second law of thermodynamics, derived
by Boltzmann, Clausius, Maxwell, is a paradigmatic
example, [3, 4, 5].

A general micr. viewpoint might be very useful to study
general properties implied by symmetries:
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Thermodynamics reflects the Hamilt. symmetry of the
basic equations, both from the viewpoint of periodic
recurrence as in [3], via the action principle, or from the
ensemble viewpoint in [10], via thermodynamic analogy.

Onsager reciprocity reflects time reversal near equilibrium,

SRB theory is linked to the homogeneity of space time with
respect to the Galilei group, as above.

Other micr. symmetries can be reflected macr., once
assumed the involved systems to follow a law of motion
obeying a general common property.

An example, quite simple and nevertheless non trivial, is
the “fluctuation theorem” which reflects the basic time
reversal symmetry, [13], of dissipative systems.

A theory of nonequilibrium ensembles can be set up related
to time reversal symmetry (V. Lucarini & GG, [17])
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Stationary states: ⇒ probab. distrib. on phase space ⇒
collections of stationary states ⇒ ensembles E : in
equilibrium give the statistics (canonical, microc., &tc).

Can this be done for stationary nonequilibrium?

Nonequilibrium stationary states are controlled by
irreversible micr. equations. But reversibility is
fundamental. Hence each evolution should be modelizable
by reversible eq.s leading to the same statistics.

The Lorenz96 eq. (periodic b.c.) is a test ground

ẋj = xj−1(xj+1 − xj−2) + F − νxj, j = 0, . . . , N − 1

Vary ν: the stationary distrib. µν form an “ensemble”

(viscosity ensemble) for L96. E(x)
def
=
∑

j x
2
j fluctuates in

µν . Replace ν by α(x) =
∑

i Fxi∑
i x

2
i

, [17, 18, 19, 20].
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New Eq. has E = E(x) =
∑

i x
2
i as exact constant of

motion

ẋj = xj−1(xj+1 − xj−2) + F − α(x)xj,

Vary E and let µE station. distrib.: (energy ensemble).
Now volume contracts by σ(x)

∑
∂j(α(x)xj)

σ(x) = (N − 1)α(x), p = τ−1
∫ τ

0

σ(x(t))dt/〈σ 〉

Conjecture,[18, 17]: Equivalent ensembles (under “Chaotic
hypothesis”): State µ̃E labeled by E corresponds to states
µν labeled by ν are equivalent if µE(α(x)) = ν (or
xµν(E(x)) = E). I.e. the two ensembles Give the same
statistics in the limit of large R = F

ν2
.

Remark the analogy with the equivalence between
canonical (β←→ν) and micro-can. (E←→E)
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Why? several reasons ’?’. Eg. chaoticity implies

α(x(t)) =

∑
i Fxi∑
i x

2
i

“self − averaging′′

equivalence sets in (F→∞) if 〈α 〉 = ν or if 〈E(·) 〉 = E.

Tests performed at N = 32 (with checks up to N = 512)
and high R (at R > 8, system is very chaotic with > 20
Lyap.s exponents and at larger R it has ∼ 1

2
N L.e.)

1) µE(α) = ν ←→µν(E) = E

2) If g is reasonable (“local”) observable 1
T

∫ T
0
g(Stx)dt has

same statistics in both

3) The “Fluctuation Relation” holds for the fluctuations of
phase space vol (reversible case): reflect chaotic hypothesis

4) Found its N -independence and ensemble independence
of the Lyapunov spectrum (Livi,Politi,Ruffo)
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5) In so doing found or confirmed several scaling and
pairing rules for Lyapunov exponents (somewhat
surprising) and checked a local version of the F.R.

Scaling of energy-momentum (irreversible model):

E =
∑

i

x2i , M =
∑

i

xi

E
i

R

N
∼ cER

4/3,
M

i

R

N
∼ 2cER

1/3 cE = 0.59± 0.01

std(E)iR
N

=

(
E2

i

R − (E
i

R)2
)1/2

N
= c̃ER

4/3, c̃E ∼ 0.2cE

std(M)iR
N

= c̃MR
2/3 c̃E ∼ 0.046± 0.001

ti,Mdec ∼ cMR
−2/3 cM = 1.28± 0.01

The first two confirm Lorenz96, the 3d,4th “new”, 5th is
the “decorrelation” time 〈M(t)M(0) 〉
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Lyap. exps. arranged pairwise (reversible and irreversible)

E(q)
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Black: Lyap. exp.s R = 2048
Magenta: π(j) = (λj + λN−j+1)/2.
Blue: Lyap. exp.s R = 256
value of π(j) at N = 32 (invisible below magenta).
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Continuous limit of Lyapunov Spectrum (LPR, [21]):
asymptotics in N = 32, 256 at R fixed:

0 0.1 0.2 0.3 0.4 0.5
−40

−30

−20

−10

0

10

20

30

40

1/2 + |1 − j/(N + 1)|

0 0.5
−2

−1

0

R = 256: λj for N = 256 and Black mark N = 32
red line π(j) = (λj + λN−j+1)/2 for N = 256
and marker for N = 32 ; zoom inset
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Scaling Lyapunov Spectrum: 8 ≤ R = 2n ≤ 2048

x =
j

N + 1
⇒ |λ(x) + π(x)| ∼ cλ |2x− 1|5/3R2/3

∼ |λ(x) + 1| ∼ cλ |2x− 1|5/3R2/3, cλ ∼ 0.8
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Dimension of Attractor

The |λ(x) + 1| ∼ cλ |2x− 1|5/3R2/3 yields the full spectrum:
hence can compute the KY dimension

N − dKY =
N

1 + cλR
2
3

−−−→
R→∞

0, ∀ N

attractor has a dimension virtually indistinguishable from
that of the full phase space.

However SRB distribution deeply different from
equidistribution (often confused with ergodicity): made
clear by the equivalence (if holding) and the validity of the
Fluctuation Relation, [22, 23, 1], needs test
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Reversible-Irreversible ensembles equivalence:
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Check Fluctuation Relation (FR, [22, 23, 17])

p = 1
τ

∫
τ

0
σ(x(t))dt

〈σ〉srb

1
τσR

log
PR

τ (p)
PR

τ (−p) = p ???
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ξ
(p

)−
ξ
(−

p
)

σ
+

 

 

τ = 0.2
τ = 0.1
τ = 0.02
τ = 0.01

F.R. slope c(τ)−−−→
R→∞

1, R = 512

c(τ) = 1 +

(
tr,σdec,R
τ

)4/3

= 1 +
(cσ
τ

)4/3
R−8/9

as τ ↑ beyond decorrelation time.
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Local Fluctuation Relation, [24], N = 32
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Local F.R.: R = 2048. Subsystem of 8 modes, [17]:

1

τ
log

PR
τ (p)

PR
τ (−p)

= σβRp+O(τ−1) = βσRp+O(τ−1)
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