Ergodicity: a historical perspective.
Equilibrium and Nonequilibrium
The “second law”: § # =0& ¢ # <0
In 1866 Boltzmann develops the idea that second law reflects a
very general property of Hamiltonian mechanics, = “theorem”

First a mechanical argument to explain why temperature
should be identified with the time-averaged kinetic energy.

Then a proof is undertaken to obtain it as “entirely coincident”
with the form first exposed by Clausius, namely:

e

over a cyclic process in which “actions and reactions are equal
to each other, so that in the interior of the body either thermal
equilibrium or a stationary heat flow will always be found”
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The basic assumption [1, Sec. IV,p.24], is that

” An arbitrarily selected atom runs over every site of the region
occupied by the body in a suitable time interval (no matter if
very long), of which the instants t; and ty are the initial and
final times, at the end of which the speeds and the directions
come back to the original value in the same location, describing
a closed curve and repeating, from this instant on, theirmotion.”

C. and B. initially imagine atoms follow a closed identical path.
Position of a particle on the path is identified with the “phase”:

©= ptg;?s - (not phase space). The motion is periodic.

Remark: initially motion (B., C.< 1871) covers positions space
not phase space, (M.1876).

Here I focus on the role of periodicity in the S.M. foundations.

Fundamentally motions are periodic: = averages computed
simply by integrating over the period i.e. over the phase.
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Let t — x(t) be a periodic motion developing, under the action
of forces with potential V(x) = Vjpi(z) + Vere(z), with period ¢

Let 6z be the variation that the motion undergoes in

“a process in which actions and reactions during the entire
process are equal to each other so that in the interior of the body

either termal equilibrium or a stationary heat flow will always
be found’,[1].

The heat theorem then becomes a property of the variation
§(K — V) btwn motion z and varied motion z’ in the process

o(t) = a(ip) D &(p),  telo,d,
2(t) =) D (), telo,],

=14 —i

with &, & two periodic functions of period 1 in the phase ¢
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Clausius proof, simple and general. The energy variation is

oU = 6(F + V) = 5(F + Vint + Vea:t) + Wc:pt
6@ = oU — Wc:pt
with dQ@ interpreted as heat received in the process x — 2’
Compute, proceeding as in the calculation of §(K — V) in the
analysis of the least action principle (variation at fixed extremes
t1,t2 and z(t1), z(t2), the resulting in §(K — V) = 0):
S(K = V)4 6V ept +2K6logi =0
so that adding and subtr. +20K ([11])
— (K + V) + 20K + 0V ep + 2K6logi = 0
—0Q + 26K +2Kélogi = —0Q + 2K61log(Ki) =0

= % = 25log(Ki) & 65
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? It is easily seen that our conclusion on the meaning of the
quantities that intervene here is totally independent from the
theory of heat, and therefore the second fundamental law is
related to a theorem of pure mechanics to which it corresponds
Just as the “vis viva” principle corresponds to the first principle;
and, as it immediately follows from our considerations, it is
related to the least action principle, in a somewhat generalized

form.” [1, #2,sec.IV]
“Generalization of the action principle” 777:

A. principle uniquely determines a motion as a minimum,
instead heat th. does not, it only establishes a relation btwn
close periodic motions if both satisfy equations of motion.

B. gives an extra argument to show § # <0.

C. leaves the inequality, ¢ # < 0, as implicit consequence of
allowing external forces (i.e. 0Vez # 0).

Remarkably in C.’s paper no signs > or <, but only equalities !
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The priority dispute makes clear the difference btwn the two
theorems: B. does not allow varying external forces: strictly
speaking it only deals with heat transfer processes.

C. instead: a general cycle with heat and work involved.

B. acknowledged without insisting that the very critique of C.
did show that ext. forces could be included. After promising
that in the future he would care for varying external forces
proceeded to further developments.

Before going through an example of great interest (1877) it is
necessary to decide whether B., C., M., really imagined
microscopic motions as continuously filling the energy surface.

There is support to the claim that it is not possible to say so.

(1876) M. still relies on periodicity and explicitly on covering of
entire energy surface, i.e. apparently on the naive form of E.H.

Aside: etimology “ergodic” not “ergon+odos” but “ergon+eidos”, [13].
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However B. in “popular writings”, [9, p.56],[9, p.55], [9, p.227]:

“The concepts of differential and integral calculus separated
from any atomistic idea are truly metaphysical, if by this we
mean, following an appropriate definition of Mach, that we have
forgotten how we acquired them”

“Through the symbolic manipulations of integral calculus, which
have become common practice, one can temporarily forget the
need to start from a finite number of elements that are at the
basis of the creation of the concepts, but one cannot avoid it”.

“Differential equations require, just as atomism does, an initial
idea of a large finite number of numerical values and points ...
Yet here again it seems to me that so far we cannot exclude the
possibility that for a certain very large number of points the
picture will best represent phenomena and that for greater
numbers it will become again less accurate, so that atoms do
exist in large but finite number

“... Often in the use of all such [discrete] models, created in this
way, it is necessary to put aside the basic concept, from which



they have overgrown, and perhaps to forget it entirely, at least
temporarily. But I think that it would be a mistake to think that
one could become free of it entirely.”

At this point it seems quite clear that B. was forming his ideas
adopting a discrete microscopic view. [12, 19],[10, p.371].

The discrete conception, already in [4], and clearly in [5],
perfectly meaningful mathematically, was apparently completely
misunderstood by his critics: yet it was clearly stated in one
reply to Zermelo, [7], and in book on gases, [8], see also [13].

But a new development seemed to set aside the
periodicity-ergodicity questions just at the same time when the
ergodic hyp. is formulated quite precisely (1871 quoted by
Gibbs,[3], - 1877), [17].

This was B.’s new conception of models of Thermodynamics
arising at least in an example of (1877) and later (1884)[5, 6],
taken up+generalized by Helmoltz, independent, [18].
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Remarkably B. did not claim his priority ? over Helmoltz, but
developed it to a general theory ensembles as models of Th.

The novelty is resumed in: The most complete proof of the
second main theorem is manifestly based on the remark that, for
each given mechanical system, equations that are analogous to
equations of the theory of heat hold. (B. 1884)

It might appear that ergodicity and discreteness can be
abandoned via this change of viewpoint, leading to Gibbs ?.

A “mechanical model of thermodynamics” is a system in which
it is possible to define quantities to be called U, T, V,p as
averages with respect to a “state”, i.e. a distribution,
depending on a few parameters «, 3,...” and such that varying
them by da, df, ... the differential M is exact, [2].

It is not obvious that such models exist, and that there is only
one if any, nor whether, when existing, they have anything to
do with the thermodynamics of the mechanical system.
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B.’s reply (1884) to above questions involves deeply ergodicity:
1) models exist with no need of dynam. details tobe established
2) there are many of them for most systems

3) one of them may describe “thermodynamics”. many others
describe the same physics because they can be shown to be
equivalent

4) The microcanonical e. implies Thermodynamics if ergodicity
holds (in the sense of periodicity)

Thus B.’s point is that Hamiltonian systems provide examples
no matter whether they contain N =1 or N = 10', if their
motions are considered periodic.

The prototype of a model of Thermodynamics (B877,B884) is a
1-D system in a confining potential ¢y (r) dep. on parameter V.
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Define a state a motion with given energy U = K + ¢y and
given V' (i.e. a periodic motion). And call:

U = total energy of the system = K + ¢

T = time average of the kinetic energy K

V= the parameter on which ¢ is supposed to depend
p = — average of dy .

A state (i.e. a periodic motion) is parameterized by U,V
and if such parameters change by dU, dV, respectively, let

dW = —pdV, dQ = dU + pdV, K=T
Then heat theorem is in this case, [5, 6]):

The differential (dU + pdV')/T is exact and equal to the
“entropy” differential S = 2log(iT). +— “orthodic model”

x4 (U,V)
S:2log/ 2/ U — p(z)dx
z_(U,V)

Then elementarily dS = M.
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Another example is the gravitational two body problem (1877)
with “state parameters” F, g (and A=aereal velocity constant.

The last example is possibly responsible of the apparently
relatively little interest shown so far for the 1884 paper:
which starts referring to Saturn rings as an example of
thermodynamics model. [14, p.36],[17].

The main point in B1884 paper is the canonical ensemble, called
“holode”, as an “orthodic”= model of Thermodynamics, and its
equivalence to the microcanonical ensemble, called “ergode”.

The orthodicity of the canonical ensemble is obtained as follows.
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B1884 thermodynalic model for N (not necessarily large):

N o oL
_ _ P\ -BK(®-pe@)____ 0]
K_K(“)_/(i: 2m>e R NZBY)
2 K 1
vEVING T = g TN T s
)
U=U(n) = —% log Z(6,V)
p=Pu) = 5_ 10gZ(/37 V)
r —ﬂ_llogZ(ﬂ, V), S=@U-F)T s F=U-TS

At this point a simple direct check, elementarily:

dU + pdV

AF = —SdT — pdV
p T

=dS
In conclusion
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(a) Ensembles are independent of the ergodic hypothesis

(b) The hypothesis in B., C., M., i.e. a point visits all energy
surface, is not absurd if space is imagined discrete

(c) Recurrence times are superastronomical, hence not
observable. But the small number of observables greatly reduces
the “equilibration times” (as discussed by B. & Thomson)

(d) A discrete representation supposes phase space discretized
on a regular lattice; hence a special status for the Liouville
measure is an “experimental fact” possibly due to our
perception of pace-time as a translation invariant continuum.

(e) E. hypothesis then selects the invariant distr. (ensembles)
really describing the thermodynamics of a large system
What can be said of nonequilibrium stationary states? are

really new ideas needed? what about entropy?
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For instance: B’s definition of H was for approach to
equilibrium. But is H entropy out of equilibrium ?

Let us think of an arbitrarily given system of bodies, which
undergo an arbitrary change of state, without the requirement
that the initial or final state be equilibrium states; then always
the measure of the permutability of all bodies involvedin the
transformations continually increases and can alt most remain
constant, until all bodies during the transformation are found
with infinite approzimation in thermal equilibrium. [5, p.288]

Attention to the problem of defining entropy have led to
thinking that B. seemed “to have abandoned the hypothesis ...
he does not even mention it in his definitive” book,[10, p.372].

However the heritage of the early views of B. on periodicity and
ergodicity and entropy as a “combinatorial problem” will not be
set aside for its consequences in present studies on chaos.
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Nonequilibrium & Ergodicity & Chaos ?
Counting configurations requires discrete phase space.

Discretization on a regular lattice on phase-space and time will
be supposed together with time reversibility

In continuum picture dissipation = average phase volume
contraction o, > 0, and motions approach a subset, the
attracting set A and on it the attractor B (with 0 vol).

R — repelling

A — attracting

In general nonconserv. motions, nonrecurrent points will be
“most” points: A = may be entire phase space, but vol(B) = 0.

E.H. can be formulated by requiring that on the attracting set
recurrent points form a one cycle permutation. In this form
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Ergodic hypothesis, for chaotic systems, is the same for
conservative and dissipative systems provided phase space s
identified with the attracting set, regarded as a surface, [17].

E.H. has far reaching consequences: in equil. and out of equil.
determines distribution controlling averages. An idea essentially
proposed by Ruelle, in the case of turbulence and for general
chaotic systems, [20].

Boltzmann-Maxwell-Gibbs distr. generalized to “SRB distr..

Simplest chaotic systems are Anosov systems: play a role like
that of harmonic oscillators in ordered mechanical systems. The
Chaotic hypothesis simply supposes that stationary states of
chaotic systems share properties of Anosov systems.

Not necessary that systems are Anosov systems in a math.
sense: assumption should be regarded to have same role as
periodicity assumption in early days of Statistical Mechanics.

Key: Anosov = coarse grained descriptions.
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How to describe the SRB distribution genesis in a coarse grained
approach to chaotic motions? It is necessary to clarify some of
the main properties of Anosov systems. Key: hyperbolicity.

s s
E;

S E;
-

U U
Fig.2: The figures illustrate very symbolically, as 2-dimensional

squares, elements of a Markovian pavement for a map.

The evolution maps admit “partition”, Eq, Es, ..., E, in
“rectangles” with “expanding and contracting sides”.

Under S no new contracting sides, under S~! no new expanding
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The “cells” Eq, Eo, ..., E, are NOT permuted by evolution:
in a discrete phase space, each contains a very large number of
the lattice formed by phase space points, “microcells”.

“Markovian partitions”, “M.P.”, can be as fine as wanted
because also SE1,SEs,...,SE, is M.P. and so is the finer
{E;;}} formed by E; N SE;. So is the partition into n* elements

E(@)=FE,NSE,N...S*E

dx
In Anosov systems the attractor B is associated with the
unstable manifolds: in the discrete version

E(@) >

Fig3: A very schematic and idealized drawing of the intersections
btwn the attractor BN E(§) = A(g) consisting of the microcells
remaining, after a transient time, inside a coarse cell E(q).
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Ergodic hypothesis = statistics is given simply by equal
weight %, to the N attractor points, but the condition that
the attractor points evolve via a cyclic permutation

imposes a very strict constraint on the weights w(q) [13, 16]

For simplicity imagine the attracting set to be a surface ¢
intersecting the coarse cells F(q) only once:

50 [Sede]anm = o

Let 0,(q) = E(q) N §: then attractor numerical density in E(q)

p(d) = 5.9

Under the evolution density is reduced by a factor e~ (4"
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where: A\, (q) = surface expansion under evolution S

= # discrete points ending in E(q) are (3_,, p(q)e= N6, (q)

! ’ 1 SE(dYNE @
plg) = e ™D (N Ty,  Tpg = { (¢) N E(q) #
q/

0 else

Since the number of sets E(q) is finite the condition is an
eigenvalue problem and the ergodic hypothesis (in the discrete
form) implies that the matrix 7 is irreducible i.e. that the
eigenfunction p(q) > 0 with eigenvalue 1 exists and is unique.

SRB weights of coarse cells = eigenvectors p(q)
This means that the SRB distribution has weights r(¢) uniquely
defined as the positive eigenvectors of an eigenvalue equation.
The eigenvalue equation is the same that arises for Gibbs
distribution in a lattice gas in which particles are labeled by gq.
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The SRB distribution is naturally associated with the
equilibrium state of a lattice gas with “potential energy” A\, (q)
and hard core between ¢, ¢ (if SE(q") N E(q) = 0), [17].

Heuristic argument can be extended: e.g.to cases in which
attracting set intersects F(q) in more “parallel surfaces”.

This remark is at the basis of the denomination
“thermodynamic formalism” of the theory of SRB states.

Finally the SRB distribution being a Gibbs state satisfies a

variational property (max, »_ (—p(q)log p(q) — Au(g)p(q)) in
the example) and in an Anosov map, as a theorem, the SRB

distribution is the p for which

max(s(u) — pu(Ay))
B

is reached over all distributions which are stationary.

It is also possible to compare the fraction of phase space volume
E .
% against the psrpp(F(q)).
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Estimate would yield a count of number N of microcells on
attractor in terms of total number Ny of microcells (x W): and

S =log % could be taken as nonequilibrium entropy

3
Let 60 = (dp}féq) =ratio btwn microcells size to typical size of

phase space volume and let average phase space contraction be
o4 > 0. The estimate [15]

log N < log Ny — % log@é

indicates that changing the size of 6 (i.e. the precision by which
points in phase space may be determined) the change in
log N/ is not an additive constant

because o, A are dynamical quantities dependent on the
system state, except in the equilibrium cases (o4 = 0)

Conclusion: it might be impossible to define an entropy function
for systems in which average phase space contraction o > 0.
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Nevertheless the average number of phase space points
visited will always tend increasing to log A: in other
words it seems possible to define a “Lyapunov
function”, which reaches its maximum when the system
reaches stationarity even though it may depend
nontrivially on the chosen precision of the discrete
representation of phase space points, [15, 17].
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