”On some integrable systems:
Brownian motion, normal forms and zeros of polynomials
Among the first works of Carlo was integration of Hamiltonian

9

1,n

21[)2+ Zw212+ Z'J ._x] (*)

G
for n = 3, following early (quantum) results of Calogero, [3, 2]:

Besides integrating the classical system also the scattering
matrix of the three bodies was calculated and found equal to
that of a system of impenetrable points (1970),[10].

H,,: Essentially self-adjoint on Dy ¢ C Lao(R")

n n

H H (z; — a:j)/\P(acl, A gvn)e*f Y e} (%)

i=1j=i+1

with A = %(1 + (14 %)%), if A>3, = g and 0 unless
r1 < T9 < ...< Ty, P asymmetric polynomial in x;.
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Calogero then computed the full spectrum of the n body system
with quadratic 2w?m dicj(@i— z;)? determining the
eigenfunctions (1971) [4].

Marchioro & G.: Eigenvectors for (*): same formula (**) with
polynomials recursively generated.

Completeness: reduced to Hermite’s polynomials completeness.

The H,, eigenvalues are (ki,...,k, integers mod permutations).
n(n—1)

= 1
Ekl,.“,k” = whz(kl + 5) + Wh)\ 2

Here H,, is restricted to UpDig where Dg/\: image of D) ¢
under map (x1,...,z,) = (xp,,...,zp,), multiplicity is n!.
Partition function: Z, = Tre #H»: and (formally)

lim (27h)" Z, =
h—0

- B 2_B 2 B, 2 2
—5 2im1 P Xic (l,fw,.)Q_E"J i
e i dpdq

_ n(ﬂ y 2w
Bwg ( )
Bw
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Zyp can be directly computed from spectrum = classical limit

n(n=1) 2T
d_'d_': 7ng 2 e
pdq = e ( B

This formula is another contribution of Marchioro[9]: it is non
trivial shown by its non inclusion in Gradshtein-Ryzhik tables.

B8 2_8 2 B, 2 2
/ *52?:11’1'*521'@' (z.fz,p*?’*’ i1 n
e i )

Apparently after writing to Carlo that it would be included
it was not.

I think that the referees had trouble (still have?) understanding
the delicate analysis of the limit as 7 — 0.

Nevertheless the formula has had considerable influence in the
literature. I had the chance of collaborating with Carlo in its
development.

A sketch of the logic on the formula.

Feynman-Kac for the kernel of e #Hn:

Roma 29/01/2016 3/10



formally:

(Z,7) / HP%% (dw;)) e V(W) < ngo

; Z/ @i(7) —w; —l—Z/ w;i(7)%dr

Kpg is the kernel of a semigroup but is it that of e BHn 9
n = 2 would be sufficient.

Lemma — theorem: Strong Lo convergence, if A > 3:

lin1/dy/P~~dw ¢ 5 (VBW)-1)
B—0

g 2
=75 ) x;
2 £ (x; —x;)? Z
1<)
and Kjg is strongly continuous %—group = e PHn on L.
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Then the inequality (F-K formula)

and K is well known: at & = i (needed for the trace) it is

‘ﬁl

—Bwh 2

n n
0/= = wh 2 _pben —g l=e P o
K/B(:L" IE) - (71'(1 _ e—26wh ) He "

Yields a priori bounds leading directly to

lim (27rh)"Tr e~ PHn

2 1n 2
Z/dl‘ TRl 2 2% 9 (11—%)2

An important remark was that the same result would follow if
the Hamiltonian was integrable and admitted, in each of the n!
sectors of Lo(R™) canonical action angle variables
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(Alw"aAn)ngu"'?SOn)a AJ Z 0 ~ (ﬁq)
and with normal form presented as integrability conjecture:

H(A ¢) = kzlkWAk + %n(n - 1)
By symplectic invariance THEN the integral would be

/ d AdcpeP Tior ke At 252 nin—1)

I learnt about the Lax pairs at a workshop and insisted with
Moser about H,, should be integrable. I tried to find the pair :
failing.

But Moser few weeks later discovered H. equations with w =0
could be written in terms of matrices
2
g v —1 1
M = 6::(0: — w2a, , Noi = 8t
ij ij (pz w sz) + P— ij i#£] (xz — xj)2
and become M = /—1 [M, N]: which implies n eigenvalues of

the matrix M are n consts of motion, indep. & in involution.
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Shortly later Adler realized integrability of Calogero’s model
[11, 1].

Among other results Moser was able to prove Marchioro’s
conjecture about the n-particles scattering.

This proved integrability but not yet the integrability
conjecture: which was proved (much) later by Frangoise.[6]

Recently, with Frangoise and Garrido, a series of papers was
then started (actually 2!) to analyze properties of integrable
systems starting from the most elementary, with long run aim
at the Calogero-Marchioro-Moser classical Hamiltonian.

Here I continue towards discussing some remarkable properties
that arose, for the pendulum and the Poinsot motions, and that
I think might be the expression of interesting structures

However we remain still far from getting close to the
CMM-system or to other systems like the Kowalevskaia
gyroscope or the Toda lattice.
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Hamiltonian of a solid with inertia I, I, I3, in Deprit’s
canonical coord. (K, A, B,v, ¢, 3), is

1B% 1 (cos2 B sin?p
213 2 I Is

-FI(KZ7A7-B7’Y7Q07/B): )(AQ_BQ)

with B = 0, 8 = 0 the unstable uniform rotation if I3 < I} < Is.

2 def =]1_21

==
Theorem: Variables p,q can be constructed so that the
Hamiltonian takes the form

J:_[l7 j:]glffgl, ngzlglf.[;l,’l"

Az pA%?
21 2J31

where x = pq so that evolution is

H(zx,r?)

p— ped @I g s eI () = 9, H ()
7, 8]

Roma 29/01/2016 8/10



The normal form H(x) is analytic in = (small) with coefficients

which are polynomials in 72:

H(w) = da — 2(1 +12)22 — (=1 + r2)2g3 — 20HDCLEE?
= B (11 4 1072 4 11p4)p5 — TEHT 20 (g 9):2 4 gy 6

_ (= 1;47’ ) <027—|— 332T2 + 3307; + 332T6 + 527’[’8),’1}7

I (1043 — 548r2 4 105804 — 54870 4 1043r%)a +

The coefficients can be expressed via combinatorial coefficients
and empirically up to order z'® have all roots on the unit circle.

Attempts to show that the polynomials (at least up to order 15)
are of Lee-Yang type i.e. that can be written as

Q) = Z e2iyj i (

01y, 0n==x1

cri+o'j

)2222‘ T4

with J;; > 0. Then conjecture implied by Lee-Yang’s theorem
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In this connection there is a theorem

Theorem: (Chen, 1995) Polynomials with symmetric, positive
and monotonic coefficients have all roots on the unit circle.[5]

Is it true that such polynomials are Lee-Yang polynomials?

The latter is a conjecture that can be checked rigorously for
n < 5 and we found some preliminary numerical evidence that
it should also work at least for n < 8.

The proof for n = 4 emerged from a discussion with A. Giuliani;
he also has a proof solving the case n =5 (and found the
reference to Chen’s theorem).

The polynomials in 72 appearing as coefficients of z* in the
normal form are sums of products of polynomials P,; of degrees
which add up to 2(k — 1) = >, n;: an expression for related
polynomials can be found in terms of a “tree expansion”: hence
have “quite explicit combinatorial expressions” (useful for the
conjecture?).
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