
Ergodicity: a historical perspective.
Equilibrium and Nonequilibrium

The “second law”:
∮
rev

dQ
T = 0 &

∮ dQ
T ≤ 0

In 1866 Boltzmann develops the idea that second law reflects a
very general property of Hamiltonian mechanics, ⇒ “theorem”

First a mechanical argument to explain why temperature
should be identified with the time-averaged kinetic energy.

Then a proof is undertaken to obtain it as “entirely coincident”
with the form first exposed by Clausius, namely:∮

dQ

T
≤ 0

over a cyclic process in which “actions and reactions are equal
to each other, so that in the interior of the body either thermal
equilibrium or a stationary heat flow will always be found”
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The basic assumption [7, #2,p.24,(1866)], is that

”An arbitrarily selected atom runs over every site of the region
occupied by the body in a suitable time interval (no matter if
very long), of which the instants t1 and t2 are the initial and
final times, at the end of which the speeds and the directions
come back to the original value in the same location, describing
a closed curve and repeating, from this instant on, theirmotion.”

B. and C. initially imagine atoms follow a closed identical path.
Position of a particle on the path is identified with the “phase”:
ϕ = time

period (not phase space). The motion is periodic.

Later groups of atoms may follow closed paths, possibly divided
in groups with different periods. However periodicity, hence
recurrence, is an essential element.

Here I focus on the role of periodicity in the foundations.

Fundamentally motions are periodic: ⇒ averages computed
simply by integrating over the period i.e. over the phase.
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Let t→ x(t) be a periodic motion developing, under the action
of forces with potential V (x) = Vint(x) + Ṽext(x), with period i

Let δx be the variation that the motion undergoes in

“a process in which actions and reactions during the entire
process are equal to each other so that in the interior of the body
either termal equilibrium or a stationary heat flow will always
be found”,[7, #2,(1866)].

The heat theorem then becomes a property of the variation
δ(K − V ) btwn motion x and varied motion x′ in the process

x(t) = x(iϕ)
def
= ξ(ϕ), t ∈ [0, i],

x′(t) = x′(i′ϕ)
def
= ξ′(ϕ), t ∈ [0, i′],

δi = i′ − i

with ξ, ξ′ two periodic functions of period 1 in the phase ϕ
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Clausius proof, simple and general. The energy variation

δU = δ(K + V ) = δ(K + V int + Ṽ ext) + δṼ ext

(But in Boltzmann δṼext ≡ 0) and

δQ = δU − δṼ ext

interpreted as heat received in the process x→ x′. Compute,
proceeding as in the calculation of δ(K − V ) in the analysis of
the least action principle (variation at fixed extremes t1, t2 and
x(t1), x(t2), resulting in δ(K − V ) = 0):

δ(K − V ) + δṼ ext + 2Kδ log i = 0

so that adding and subtr. +2δK ([12, (1871)])

+ 2δK − δ(K + V ) + δṼ ext + 2Kδ log i = 0

− δQ+ 2δK + 2Kδ log i ≡ −δQ+ 2(δK +Kδ log i) = 0

− δQ+ 2Kδ log(Ki) = 0

Utrecht 05/02/2016 4/28



−δQ+ 2Kδ log(K log i) = 0 ⇒ δQ

K
= 2 δ log(Ki)

”It is easily seen that our conclusion on the meaning of the
quantities that intervene here is totally independent from the
theory of heat, and therefore the second fundamental law is
related to a theorem of pure mechanics to which it corresponds
just as the “vis viva” principle corresponds to the first principle;
and, as it immediately follows from our considerations, it is
related to the least action principle, in a somewhat generalized
form.” [7, #2,(1866)]

“Generalization of the action principle” ??: really ??
Act. principle uniquely determines a motion as a minimum,
instead heat th. does not, it only establishes a relation btwn
close periodic motions if both satisfy equations of motion.

Rather shows: to “each” mechanical system it is possible to
associate a “model of thermodynamics”

Remarkably in C. paper no signs ≥ or ≤, but only equalities !
while B. needs an extra argument to show

∮ dQ
T ≤ 0
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The priority dispute makes clear the difference btwn the two
theorems: B. does not allow varying external forces; strictly
speaking it only deals with heat transfer processes.

The result of C. applies instead to a general cycle in which heat
and work are involved.

B. at first claims that his analysis would work unchanged in
presence of varying ext. forces, but later acknowledges the lack
of them: without even insisting that the very critique of C. did
show that ext. forces could be included. Instead, after
promising that in the future he would care for varying external
forces, proceeded to further developments.

Before going through an example of great interest (1877) it is
necessary to decide whether B., C., M., really imagined
microscopic motions as continuously filling the energy surface.

There is support to the claim that it is not possible to say so.
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First quote Clausius (1871)

..temporarily, for the sake of simplicity we shall assume, as
already before, that all points describe closed trajectories. For
all considered points, and that move in a similar manner, we
suppose, more specifically, that they go through equal paths with
equal period ... If the initial stationary motion is changed into
another, hence on a different path and with different period,
nevertheless these will be still closed paths each run through by a
large number of points.

This is again just “periodicity”. Notice that there is no
statement about visiting the whole energy surface

The discrete view of phase-space and time emerges from the
“Popular Writings”
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Boltzmann in “Popular Writings”, [9, p.56],[9, p.55], [9, p.227]:

‘The concepts of differential and integral calculus separated from
any atomistic idea are truly metaphysical, if by this we mean,
following an appropriate definition of Mach, that we have
forgotten how we acquired them”

“Through the symbolic manipulations of integral calculus, which
have become common practice, one can temporarily forget the
need to start from a finite number of elements that are at the
basis of the creation of the concepts, but one cannot avoid it”.

“Differential equations require, just as atomism does, an initial
idea of a large finite number of numerical values and points ......
Yet here again it seems to me that so far we cannot exclude the
possibility that for a certain very large number of points the
picture will best represent phenomena and that for greater
numbers it will become again less accurate, so that atoms do
exist in large but finite number
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“... Often in the use of all such [discrete] models, created in this
way, it is necessary to put aside the basic concept, from which
they have overgrown, and perhaps to forget it entirely, at least
temporarily. But I think that it would be a mistake to think that
one could become free of it entirely.”

At this point it seems quite clear that B. was forming his ideas
about the interpretation of the physical events adopting a
microscopic discrete view. [13, p.26],[19],[11, p.371].

Finally it is interesting to report a quotation by M., the closest
I found to the modern ergodic hypothesis (EH): it refers to the
entire energy surface as in modern form of EH.

External help is allowed (rough boundaries), which still scatter
deterministically, hence it must be conceded that he too makes
use of a discrete conception of the microscopic motions.

As an aside: the etimology of “ergodic” is not “ergon+odos” (as
in Erhenfest) but “ergon+eidos”, [14].
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So Maxwell (1876), [21, p.714]:

”The only assumption which is necessary for the direct proof [of
the kinetic energy equipartition] is that the system, if left to
itself in its actual state of motion, will, sooner or later, pass
through every phase which is consistent with the equation of
energy. Now it is manifest that there are cases in which this
does not take place ....... But if we suppose that the material
particles, or some of them, occasionally encounter a fixed
obstacle such as the sides of a vessel containing the particles,
then, except for special forms of the surface of this obstacle,
each encounter will introduce a disturbance into the motion of
the system, so that it will pass from one undisturbed path into
another...”. ”

M. refers to proof of Maxwellian given by B. in [4, #5,(1868)]
without using periodicity (but for a strongly rarefied gas).

By contrast the modern Ergodic H. replaces all config. →
dp dq-almost all and states visit frequency = volume.
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The possible discrete conception, perfectly meaningful
mathematically, was apparently completely misunderstood by
his critics: yet it was clearly stated in one of the replies to
Zermelo, [10, #119(1896)], & in Gas Theory [2, (1896)], [14].

In 1871 B. begun to consider an approach to Thermodynamics
which seemed to depart from the periodic motions: this became
much more clear in 1877 and later, in 1884, where the general
theory of ensembles in its modern form was completed.

Novelty (?) was B.’s conception of models of Thermodynamics.

Interestingly the first examples of such models were still drawn
from periodic motions and I present below the example of
(1877) which later (1884), apparently independently, was taken
up and generalized by Helmoltz.

Remarkably B. did not claim his priority ? over Helmoltz work,
rather developed it to build a very general theory of the
ensembles as models of Thermodynamics.
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A “mechanical model of thermodynamics” is a system in which
it is possible to define quantities to be called U, T, V, p as
averages with respect to a “state”, i.e. a distribution,
depending on a few parameters α, β, . . .” and such that varying
them by dα, dβ, . . . the differential dU+pdV

T is exact.

It is not obvious that such models exist, and that there is only
one if any, nor whether, when existing, they have anything to
do with the thermodynamics of the mechanical system.

B.’s reply to the above questions involves deeply ergodicity:

1) models exist (B. 1866, C. 1871), with no need of dynam.
details to be established (B. 1884)

2) there are many of them for most systems (B. 1884)

3) one of them describes “thermodynamics” if ergodicity holds
(in the sense of periodicity)

4) the others describe the same physics because they can be
shown to be equivalent (B. 1884)
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Randomness and ergodicity in B., [5, #18,p.240,l.4],[18,
p.13-14]:

“Since the great regularity shown by the thermal phenomena
induces to suppose that f is almost general and that it should be
independent from the properties of the special nature of every
gas; and even that the general properties depend only weakly
from the form of the equations of motion, with the exception of
the cases in which the complete integration does not present
insuperable difficulties.”

“An argument against is that so far the proof that such
distributions are the unique that do not change in presence of
collisions is not yet complete. It remains nevertheless
established that a gas in the same temperature and density state
can be found in many configurations, depending on the initial
conditions, a priori improbable and even that will never be
experimentally observed. ”.[5, #18,p.255].
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Certainly the strict periodicity seems replaced by an apparently
more reasonable stochasticity to account for the occupation of
the whole energy surface, on which the new thermodynamics
models depend, as it appears from the third paper of 1871

The great chaoticity of the thermal motion and the variability of
the force that the body feels from the outside makes it probable
that the atoms get in the motion, that we call heat, all possible
positions and velocities compatible with the equation of the “vis
viva”, and even that the atoms of a warm body can take all
positions and velocities compatible with the last equations
considered.[3, #19,p.284][18, p.167].
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The most complete proof of the second main law is manifestly
based on the remark that, for each given mechanical system,
equations that are analogous to equations of the theory of heat
hold. (B. 1884)

At the end of this apparently new view it might appear that
ergodicity and discreteness can be abandoned via this change of
viewpoint, leading to Gibbs ?.
However item 3), periodicity, remains in the background
playing a central role: and examples of systems with periodic
motions are discussed before the general ensembles.

The message is that Hamiltonian systems provide examples no
matter whether they contain N = 1 or N = 1019, if their
motions are considered periodic.

But periodicity is not necessary its role is reduced to justify a
priori considering classical ensembles as related to Physics, to
people not willing to take the canonical ensemble as an axiom.
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The prototype of a model of Thermodynamics (B877,B884) is a
1-D system in a confining potential ϕV (r) (V=parameter).

Define a state a motion with given energy U and given V (i.e. a
periodic motion). And call:

U = total energy of the system ≡ K + ϕV
T = time average of the kinetic energy K
V = the parameter on which ϕV is supposed to depend
p = − time average of ∂V ϕV .

A state (i.e. a periodic motion) is parameterized by U, V

and if such parameters change by dU, dV , respectively, let

dW = −pdV, dQ = dU + pdV, K = T

Then, if i = i(U, V ) is the period, heat theorem is in this case:

The differential (dU + pdV )/T is exact and equal to the
“entropy” differential S = 2 log(iT ). ←→ “orthodic model”
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In fact let x±(U, V ) be the extremes of the oscillations of the
motion with given U, V and define S as:

S = 2 log

∫ x+(U,V )

x−(U,V )

√
U − ϕV (x)dx = 2 log iK

by dx√
K

=
√

2
mdt to express period i and averages via

∫
· dx√

K
.

dS =

∫ (
dU − ∂V ϕV (x)dV

)
dx√
K∫

K dx√
K

=

∫ (
dU − ∂V ϕV

)√
m
2
dt
i∫

K
√

m
2
dt
i

=
dU + pdV

T
≡ dQ

T
Another example is the gravitational two body problem (1877)
[1, #39,(1877)]

E =
1

2
mρ̇2 +

mA2

2ρ2
− mg

ρ
, ϕ(ρ) = −gm

ρ
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where the parameters are E, g with A=aereal velocity constant

dE − 〈 ∂gϕ(r)
∂g 〉dg

T
=
dE − 2E dg

g

−E
= d log

g2

−E
def
= dS

However B. also give a “counterexample”: namely
ϕb(r) = ϕ(r) + b

r2 . This exhibits the importance of the
“physical uniqueness” question. Also A variable !

The last example is possibly responsible of the apparently
relatively little interest shown so far for the 1884 paper:
which starts referring to Saturn rings as an example of
thermodynamics model. [15, p.36],[18].

However the B1884 is a breakthrough, [8, #73]: where the
theory of ensembles as models of Thermodynamics (begun in
1871, [3, #19,(1871)]) is fully developed: with the canonical
ensemble “orthodicity” obtained as follows:
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B1884 thermodynamic model for N (not necessarily large):

K = K(µ) =

∫ ( N∑
i=1

~p 2
i

2m

)
e−βK(~p)−βΦ(~q) d~p d~q

h3NN !Z(β, V )

v = V/N

U = U(µ) = − ∂

∂β
logZ(β, V )

p = P (µ) = β−1 ∂

∂V
logZ(β, V )

At this point a simple direct check. Let:

F = −β−1 logZ(β, V ), S = (U − F )/T ←→ F = U − TS

then obtain: T = 2
3kB

K(µ)
N = 1

kBβ
dT
T = −dβ

β because d~q, d~p
integrals are independent (and the d~p one is gaussian):

dF = −SdT − pdV ⇒ dU + pdV

T
= dS

In conclusion
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(a) Ensembles theory is independent of the ergodic hypothesis

(b) The hypothesis as in B., C., M., i.e. a point visits all phase
space of given energy, is not absurd if space is imagined discrete

(c) Recurrence times are superastronomical, hence not
observable. But the small number of observables greatly reduces
the “equilibration times” (as discussed by B. & Thomson)

(d) A discrete representation supposes phase space discretized
on a regular lattice; hence a special status for Liouville measure:
an “experimental fact” possibly due to our perception of
space-time as a translation invariant continuum.

(e) E. hypothesis then privileges the invariant distributions
really describing the thermodynamics of a large system

What can be done in nonequilibrium cases? beginning with the
natural extension of equilibrium states, i.e. stationary states.
What replaces the Liouville distr.? can entropy be defined?
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Nonequilibrium & Ergodicity & Chaos ?

B’s definition of H was set for approach to equilibrium. Does
equality of H with thermod. entropy ⇒ define entropy also out
of equilibrium (even out of stationarity state ?) ?

B.[6, #42,p.288,(1877)]:

Let us think of an arbitrarily given system of bodies, which
undergo an arbitrary change of state, without the requirement
that the initial or final state be equilibrium states; then always
the measure of the permutability of all bodies involved in the
transformations continually increases and can at most remain
constant, until all bodies during the transformation are found
with infinite approximation in thermal equilibrium.

Commented by M.Klein as:

“... logP was well defined whether or not the system is in
equilibrium, so that it could serve as a suitable generalization of
entropy”, [20, p.82]
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Many attempts for noequilibrium entropy, in stationary or even
evolving states. But as many difficulties. To begin with:

But counting configurations requires discrete phase space.

Conservation of Liouville measure no longer can offer the
illusory argument offered in equilibrium as it is not conserved.

In the continuum picture dissipation implies phase space
volume contraction, and motions approach the attracting set A,
a subset of phase space, and on it the attractor B (which has
therefore zero volume).

In general nonconserv. motions, nonrecurrent points will be
“most” points: A = may be entire phase space, and vol(B) = 0.

E.H. can be formulated by requiring that on the attracting set
recurrent points form a one cycle permutation. In this form

the ergodic hypothesis, for chaotic systems, is the same for
conservative and dissipative systems provided phase space is
identified with the attracting set.
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Of course in chaotic motions the periodicity of motion is not
observable as the time scale for the recurrence will remain (in
equilibrium as well as out of equilibrium) out of reach.

E.H. has far reaching consequences: in equil. determines the
equilibrium distribution. Out of equilibrium in stationary states
it also determines the distr. of time averages. An idea proposed
by Ruelle, for turbulence and for general chaotic systems.

B.M.G. distributions are generalized to “SRB distributions.

Simplest chaotic systems are the Anosov systems: they play a
role like harmonic oscillators in ordered mechanical systems.

The key property is that “coarse grained descriptions” can be
naturally defined. Of course it is not necessary that systems
are Anosov systems in a mathematical sense.

Once the idea is grasped it becomes extendible to more general
systems (from the still mathematical sounding “axiom A”
attractors to the more empirically defined “chaotic hypothesis”).
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How to describe the SRB distribution genesis in a coarse grained
approach to chaotic motions? It is necessary to clarify some of
the main properties of Anosov systems. Key: hyperbolicity.

s
Ei

u u

s

S Ei

Fig.2: The figures illustrate very symbolically, as 2-dimensional

squares, elements of a Markovian pavement for a map.

The evolution maps admit “partition”, E1, E2, . . . , En in
“rectangles” with “expanding and contracting sides”.

Under S no new contracting sides, under S−1 no new expanding
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The “cells” E1, E2, . . . , En are NOT permuted by evolution:
in a discrete phase space, each contains very many points of the
lattice formed by phase space points, “microcells”.

“Markovian partitions”, “M.P.”, can be as fine as wanted
because also SE1, SE2, . . . , SEn is M.P. and so is the finer
{Eij}n1 formed by Ei ∩ SEj or the nk elements partition

E(~q) = Eq1 ∩ SEq2 ∩ . . . SkE~qk
In Anosov systems the attractor B is associated with the
unstable manifolds: in the discrete version

E(q)

Fig3: A very schematic and idealized drawing of the intersections

btwn the attractor B ∩ E(~q) = ∆(~q) consisting of the microcells

remaining, after a transient time, inside a coarse cell E(~q).
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Ergodic hypothesis ⇒ statistics is given simply by equal
weight 1

N , to the N attractor points, but the condition that
the attractor points evolve via a cyclic permutation.

imposes a very strict constraint on the weights w(~q) [14, 17]

For simplicity imagine the attracting set to be a surface δ
intersecting the coarse cells E(q) only once: let

δu(q) = E(q) ∩ δ

Then the numerical density of attractor points in E(q′) is

ρ(q′) = N(q′)
δu(q′)

Under the evolution the density is reduced by a factor e−λu(q′)

λu(q) = surface expansion under evolution S

→ # discrete points ending in E(q) are (
∑

q′ ρ(q′)e−λu(q′))δu(q)

ρ(q) =
∑
q′

e−λu(q′)ρ(q′)Tq,q′ , Tq,q′ =

{
1 SE(q′) ∩ E(q) 6= ∅
0 else
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Since the number of sets E(q) is finite the condition is an
eigenvalue problem and the ergodic hypothesis (in the discrete
form) implies that the matrix T is irreducible i.e. that the
eigenfunction ρ(q) > 0 with eigenvalue 1 exists and is unique.

SRB weights of coarse cells = eigenvectors ρ(q)

This means that the SRB distribution has weights ρ(q) uniquely
defined as the positive eigenvectors of an eigenvalue equation,
[18].

The eigenvalue equation is the same that arises for Gibbs
distribution in a lattice gas in which particles are labeled by q.

The SRB distribution is naturally associated with the
equilibrium state of a lattice gas with “potential energy” λu(q)
and hard core between q, q′ (if SE(q′) ∩ E(q) = ∅), [18].
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The heuristic argument can be extended to the more interesting
cases in which the attracting set intersects E(q) in more
“parallel surfaces”.

But having seen the idea it is perhaps simpler to look at the
mathematical proof (!).

This remark is at the basis of the denomination
“thermodynamic formalism” of the theory of SRB states.

Finally the SRB distribution being a Gibbs state satisfies a
variational property (maxρ

∑
q(−ρ(q) log ρ(q)− λu(q)ρ(q)) in

the example) and in an Anosov map, as a theorem, the SRB
distribution is the µ for which

max
µ

(s(µ)− µ(log λu))

is reached over all distributions which are stationary.

Utrecht 05/02/2016 26/28



It is also possible to compare the fraction of phase space volume
|E(~q)|
W against the µSRB(E(~q)).

Such an estimate would yield a count of the number N of
microcells on the attractor in terms of the total number N0 of
microcells (∝ phase space volume): and

S = log NN0
could be taken as nonequilibrium entropy

But this would make sense

if S depended only up to an additive constant on the microcells
dimensions:

let θ = (dpdq)3

h3 be the ratio between the microcells dimensions to
a typical size of phase space volume, then the variation of S
should only be an additive constant.

But this seems incompatible with an average phase space
contraction σ+ > 0, i.e. in stationary nonequilibrium states.
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The estimate, [16, 18],

logN < logN0 −
σ+

λ
log θ

1
3

indicates that changing the size of θ (i.e. the precision by which
points in phase space may be determined) the change in
logN/N0 is not an additive constant

because σ+, λ are dynamical quantities which are dependent on
the state of the system, except in the equilibrium cases (σ+ ≡ 0)

Conclusion: it might be impossible to define an entropy function
for systems in which average phase space contraction σ+ > 0.

Nevertheless the average number of phase space points visited
will always tend increasing to logN : in other words it seems
possible to define a “Lyapunov function”, which reaches its
maximum when the system reaches stationarity even though it
may depend nontrivially on the chosen precision of the discrete
representation of phase space points, [18].
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