
Friction? & Reversibility? and Chaotic Hypothesis

Basic question: ⇒ microscopic dynamics is reversible but
macroscopic equations are not; dissipation is the reason.

Dissipation is phenomenologically introduced: for instance
in Navier-Stokes fluids it is the viscosity ν > 0:

∂t ~u = −(u · ∂) ~u+ ν∆ ~u+ ~f − ~∂p

In the heat equation it is the thermal conduction
coefficient, in Lorenz61 atmospheric turbulence model it is
in the linear part just as in the Lorenz96 model:

ẋj = xj−1(xj+1 − xj−2) + F − ν xj , j = 0, . . . , N − 1

Question: can the fundamental time reversal symmetry be
preserved also in models of macroscopic phenomena? or
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or is the essence of dissipation represented by the
phenomenologic coefficients?

This does not mean questioning that the macroscopic
equations arise when suitably rescaled observables are
imagined studied at singular rescaling values.

It is convenient to examine concrete cases in the attempt to
formulate a conjecture of equivalence between reversible
and irreversible models.

In the ’980s reversible equations of motion were used
successfully in simulations to study simple fluids in
stationary states: energy could not be kept constant (not
even bounded) unless external forces work was balanced.

Artificial forces, like equally artificial stochastic noise or
phenomenological friction , forbade energy build-up,[1].
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The justification was that, although somewhat simpler than
stochastic forces, the new equations were equivalent.

Idea: every (macroscopic) dissipative evolution can be
equivalent to a reversible one, provided motions are
sufficiently chaotic, (as they usually are under strong
forcing or large N). [2, 3, 4, 5]

“In microscopically reversible (chaotic) systems time
reversal symmetry cannot be spontaneously broken, but
only phenomenologically so”,[6].

Mechanism proposed: “same” as that for equilibrium
ensembles, i.e. for collections of stationary states.
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e.g. (recall) microcanonical ensemble µM
E with energy E

and density fixed is a probability distribution on phase
space very different from canonical ensemble µC

β with same
density and inverse temperature β; yet

They are equivalent provided the average energy
E = µC

β (H) in the canonical ensemble coincides with the
microcanonical energy E (as V →∞). Or reciprocally: if

β
−1

= 2
3
µC

E(K).

Of course not “everything” is the same: just “local
observables have the same average values”

Can this be done for stationary nonequilibrium?

Start from a work of V. Lucarini and G., [7].
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Consider the special case of Lorenz96 chain (periodic b.c.)

ẋj = fj(x) + F − ν xj , ν > 0, j = 1, . . . , N (Eq)

fj ≡ xj−1(xj+1 − xj−2) (so that f(x) = f(−x) ⇒ time
reversal)

Chaotic hypothesis: “think of it as an Anosov system”
(Cohen,G, if F is large), [8, 9, 10]

analogue of the periodicity≡ergodicity hypothesis of
Boltzmann, Clausius, Maxwell, and possibly as
unintuitive), [11, 12].

Consider two “ensembles”, i.e. collections of stationary
distributions
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(1): Vary ν and let µC
ν stationary distrib. for (Eq)

Let E = µC
ν

∑

j x
2
i :

this is an “ensemble” (viscosity ensemble), ∼canonical.

Replace ν by α(x) =

∑

i Fxi
∑

i x
2
i

New (Eqnew) has E(x) =
∑

i x
2
i as exact constant of

motion E

ẋj = xj−1(xj+1 − xj−2) + F − α(x)xj , (Eqnew)

(2): Vary E and let µM
E station. distrib.: this is the (energy

ensemble), ∼microcanonical.

Volume contracts by σ(x) =
∑

∂j(α(x)xj)

σ(x) = (N − 1)α(x), p = τ−1

∫ τ

0

σ(x(t))dt/〈 σ 〉
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State µM
E labeled by E corresponds to state µC

ν labeled by
ν ⇒, equivalent, if µM

E (α(x)) = µC
ν (E(x))

µC
ν ∼ µM

E ←→ E = µC
ν (E(x)) ←→ ν = µM

E (α(·))

Give the same statistics in the limit of large R = F
ν2
.

Analogy: “canonical” µC
β = “microcanonical” µM

E .

Why? several reasons. Eg. chaoticity implies self averaging
for the observable α(x) which replaces viscosity in (Eq’):

α(x(t)) =

∑

i Fxi
∑

i x
2
i

“self − averaging′′

“and other reasons” (??)
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In the work with V. Lucarini,[7], tests were performed at
N = 32 (with checks up to N = 512) and high R (at R > 8,
system is very chaotic with > 20 Lyap.s exponents and at
larger R it has ∼ 1

2
N Lyap.exp. > 0).

1) µE(α) = ν ←→µν(E) = E which is clearly a key
selfconsitency test.

2) If g is reasonable (“local”) observable 1
T

∫ T

0
g(Stx)dt has

same statistics in both

3) Found its N -independence and ensemble independence
of the Lyapunov spectrum (and check of the
Livi,Politi,Ruffo interpolation)

4) In so doing found several scaling and pairing rules for
Lyapunov exponents (somewhat surprisingly), continuimg
the list of scaling properties found by Lorenz.
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5) The “fluctuation Relation” holds for the fluctuations of
phase space vol. (reversible case): reflecting the chaotic
hypothesis: last but not least as it is a rather stringent test
of the chaotic hypothesis for Lorenz96, and checked a local
version of the F.R.

A list of some scaling relations (irreversible model):

E =
∑

i

x2
i , M =

∑

i

xi

E
i

R

N
∼ cER

4/3,
M

i

R

N
∼ 2cER

1/3 cE = 0.59± 0.01

std(E)iR
N

=

(

E2
i

R − (E
i

R)
2
)1/2

N
= c̃ER

4/3, c̃E ∼ 0.2cE

std(M)iR
N

= c̃MR2/3 c̃E ∼ 0.046± 0.001
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The first two confirm Lorenz96, the 3d,4th “new”, and the
5th gives the “decorrelation” time of 〈M(t)M(0) 〉

ti,Mdec ∼ cMR−2/3 cM = 1.28± 0.01

it is important because it sets the time scale to probe in
testing the equivalence conj.

Before showing main results on the F.R. some graphs
illustrate other other aspects of the model.
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(Irreversible) model Lyapunov exponents arranged pairwise
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IHP13-06-2017 11/24



Lyapunov exp. reversible ≡ irrev
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Dimension of Attractor

The |λ(x) + 1| ∼ cλ |2x− 1|5/3R2/3 yields the full spectrum:
hence
From the asymtotic expressions for the Lyap. exp. the KY
dimension of the attractor turns out:

N − dKY =
N

1 + cλR
2
3

−−−→
R→∞

0, ∀ N

i.e. attractor has a dimension virtually indistinguishable
from that of the full phase space.

However SRB distribution deeply different from
equidistribution: as it can be made clear by the equivalence
(if holding). Therefore validity of the Fluctuation Relation
becomes a key test
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Check Fluctuation Relation (FR) (i.e. Chaotic Hypothesis)

p = 1
τ

∫
τ

0
σ(x(t))dt

〈σ 〉
srb

1
τσsrb

log PR
τ (p)

PR
τ (−p)

= p ???
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Check Fluctuation Relation
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Local Fluctuation Relation

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

p

1

τ
σ
β R

P
R τ
(p

)
P

R τ
(−

p
)

 

 

τ = 0.2
τ = 0.1
τ = 0.02
τ = 0.01

Local F.R. for R = 2048

1

τ
log

PR
τ (p)

PR
τ (−p)

= σβ
Rp+O(τ−1) = βσRp+O(τ−1)

IHP13-06-2017 16/24



Other examples: NS equation (periodic container O) with
viscosity ν

~̇u+ (~u · ∂)~u = −∂p+ ~g + ν∆~u = 0, ∂ · ~u = 0

and the equivalent (?) eq. balanced on the “dissipation”
observable En(~u) =

∫

O
(∂~u(x))2dx

~̇u+ (~u · ∂)~u = −∂p+ ~g + α(~u)∆~u, ∂ · ~u = 0

α(~u)
def
=

∑

~k
~k2 ~g~k · ~u−~k

∑

~k
~k4|~u~k|

2
, D = 2

which yields an evolution with constant enstrophy
En(~u) =

∑

k
k2|uk|

2
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In Fourier transform, if k = (k1, k2) ∈ Z
2, it is (if

F = 1, L = 2π)

u(x) =
∑

k

uk

ik⊥

|k|
e−2πik·x, uk =

∫

u(~x)·
−ik⊥

|k|
e2iπk·x

dx

(2π)2

and in mode space the equations become

u̇k =−
∑

k1+k2=k

(k⊥
1 · k2)(k

⊥
2 · k

⊥)

|k1||k2||k|
uk1uk2 −

1

R
k2uk + fk

A groundbreaking work (SJ993),[2], presented evidence of
equivalent reversible equations to NS 3D in the regime of
developed turbulence provided the balance of the external
work was imposed on a rather large number of observables
(imposing the OK scaling on the energy). Several tests
have been performed.
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Early study in [13] up to R = 103 tests, in NS2D, the
conjecture in a case with few modes (up to ∼ 160); the
possibility of balancing the external force by fixing instead
of the enstrophy other observables, namely the energy or
the “palinstrophy”, seemed to follow the conjecture even
for the Lyapunov spectrum, (surprisingly).

Later work, [?], shows that at higher number of modes the
conjecture might not extend to the entire Lyapunov
spectrum: in particular at R ∼ 90 and 960 modes
(“31× 31”). However the original conjecture, [3], refers to
“local observales” (and the Lyapunov exponents are not
such).

A main computational difficulty seems to be the
determination of the average value of the enstrophy En at
fixed Reynolds R: this is time consuming as the average is
reached on a long time scale.
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It is interesting to present a few recent (preliminary) results
(using the IHP cluster at the workshop).
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Local Lyapunov spectrum in a 48 modes truncation (7× 7)
of NS2D: (+)= viscous, (×)= reversible and R = 128.
IHP13-06-2017 20/24



������

������

������

��

������

������

������

������

�����	

�����


�� ������ ������ ������ ������ �	���� �
����

���
���������������
���
�������������������������

�������

At 960 modes and R = 2048: the evolution of the observable
“reversible viscosity”:

α(u) =

∑

|k|2Fkuk
∑

|k|4|uk|2
According to the equivalence the time average of α should be
1

R
. Represents the fluctuating values of α at intervals of 104

steps (see below); the middle line is the running average of α

(at intervals of 100 steps) and it converges to 1

R
(horiz. line).
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To compare reversible and irreversible Lyapunov spectra it
should be necessary to compute them over a time scale of
15 · 107 time steps. This is at the moment being attempted.
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showing that the approach of the running average to the
average is slow (again 960 modes).
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The fluctuations of the reversible viscosity α(u) skipping
“only” 1000 steps (instead of 104 as in the previous graph).

Further relevant references in [14, 15, 16, 17, 18].
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