
Finite thermostats in nonequilibrium
(classical and quantum)

Part of the recent progress has been due to

(a) Focus on stationary states out of equilibrium, [1].

(b) Modeling thermostats in terms of finite systems, [2, 3].

Finite thermostats have been essential to clarify that
reversibility and dissipation are not to be identified.

Thermostats ⇒ Equations of motion: NOT Hamiltonian ⇒
phase space contraction

Rationale: properties should not depend on how
thermostats are imagined to work.

Hence the question arises of which is the meaning of the
phenomenological constants describing friction.
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I consider first the paradigmatic case of the NS equations
which generates a proposal for a general theory of
equivalence between statistical descriptions of stationary
states as an extension of the theory of equilibrium
ensembles to nonequilibrium.

Then I shall discuss the possible further extension to
quantum system in stationary nonequilibrium.

One idea behind the first equivalence studies is linked to
the time reversal symmetry.

Time reversal is a fundamental symmetry while friction is
phenomenological. Therefore one can investigate whether

Every (even if macroscopic) dissipative evolution can be
equivalent to a reversible one, provided motions are
sufficiently chaotic, (as they usually are under strong
forcing or large N). [4, 5, 6, 7]
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“In microscopically reversible (chaotic) systems time
reversal symmetry cannot be spontaneously broken, but
only phenomenologically so”,[8].

In the case of the NS2D:

~̇u+ (~u · ∂)~u = −∂p+ ~g + ν∆~u, ∂ · ~u = 0 Eq

the proposal is (at fixed forcing ~g) their equivalence to the
equations

~̇u+ (~u · ∂)~u = −∂p+ ~g + α(~u)∆~u, ∂ · ~u = 0 Eqnew

α(~u)
def
=

∑

~k
~k2 ~g~k · ~u−~k

∑

~k
~k4|~u~k|

2
, D = 2

which have α so defined that the “dissipation” observable
E(~u) =

∫

(∂~u(x))2dx is an exact constant of motion.
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Mechanism proposed: “same” as that for equilibrium
ensembles, i.e. special collections of stationary states.

Consider two “ensembles”, i.e. collections of stationary
distributions

(1): Vary ν and let µC
ν stationary distrib. for (Eq). Let

E = µC
ν (

∫

(∂~u)2) = µC
ν (E(u))

this is an “ensemble” (viscosity ensemble), [∼canonical].

Next consider the new equation (Eqnew): it has
E(u) =

∫

(∂~u)2 as exact constant of motion

(2): Vary E and let µM
E station. distrib.: this is the (energy

ensemble), [∼microcanonical].
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State µM
E labeled by E corresponds to state µC

ν labeled by ν

⇒ and are equivalent, denoted µC
ν ∼ µM

E , if i) OR ii) hold

i) E = µC
ν (E(·))

ii) ν = µM
E (α(·))

in the sense that they give the same statistics in the limit of
large R = 1

ν
to observables F which are “local observables”:

i.e. depend on finitely many Fourier comp. of ~u.

Analogy: “canonical” µC
β = “microcanonical” µM

E .

Why? Eg. chaoticity implies self averaging for the
observable α(x) which replaces viscosity in (Eqnew):

α(x(t)) =

∑

i Fxi
∑

i x
2
i

“self − averaging′′ to ν
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Problem: can reversibility be detected even in irreversible
NS?

A theoretical basis can be searched in the “Chaotic
hypothesis” (GC)

Chaotic hypothesis: “think of it as an Anosov system”
(Cohen,G, if F is large), [9, 10, 11]

which is analogous to the periodicity≡ergodicity hypothesis
of Boltzmann, Clausius, Maxwell, and possibly as
unintuitive), [12, 13, 14].

Then in the reversible cases the phase space contraction
rate σ(u) averaged over a time τ

p
def
=

1

τ

∫ τ

0

σ(u(t)

〈 σ(·) 〉
dt (FT )

should have a PDF obeying a fluctuation relation, FR, [15].
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This means that for large τ the probability distribution of p
in µM

E (reversible viscossity ensemble) should fulfill

Probτ (p)

Probτ (−p)
= eτ〈 σ 〉p+o(τ), τ → ∞

Equivalence conjecture applied to the reversible viscosity
ensemble µM

E and to the observable σ(u) (which is not
constant) would imply that σ(u) fluctuates according to
FR (the original one!) in the corresponding µC

ν .

Of course consistency requires that the average
µC
ν (α(u)) = ν.

The above “predictions” can be tested. And one can
explore if the equivalence conjecture can be extended even
to the Lyapunov spectrum (although the Lyapunov
exponents, as well as σ(u) are not local quantities).
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It is interesting to present a few recent (mostly
preliminary) results (encouraging but which need further
confirmation as they are not yet very stable).
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Local Lyapunov spectrum in a 48 modes truncation (7× 7)
of NS2D: (+)= viscous, (×)= reversible and R = 128.
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At 960 modes and R = 2048: the evolution of the observable
“reversible viscosity”:

α(u) =

∑

|k|2Fkuk
∑

|k|4|uk|2
According to the equivalence the time average of α should be
1

R
. Represents the fluctuating values of α at intervals of 104

steps (see below); the middle line is the running average of α

(at intervals of 100 steps) and it converges to 1

R
(horiz. line).
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The graph gives the values only every 1000 interaction
steps (otherwise it would be just a black stain).

We see that once the attractor might be considered reached,
for instance if the running average of the reversible viscosity
is close to 1

R
there are still wild fluctuations and the

statistics can be sampled to check whether the FR applies.

For comparing the reversible and irreversible Lyapunov
spectra it should be necessary to compute them over a time
scale of 106 time steps. This is being attempted.
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Quantum systems:
Temperature and heat are defined by the special apparata
that measure them, [16].

However these are important physical obs. in meso-physics

and nano-physics. [17, 18, 19].

Furthermore for simulations finite thermostat??, [20], are
needed as well as a connection with dynamical systems
formulation? (⇒ CH & FT)

A natural model is in Figure 1 where a quantum system C0

is coupled to quantum thermostats T1, T2, . . ., proposed in
[21] but studied only when the thermostats consisted of free
gases.

Later considered in [17, 19, 18] with the thermostats
interpreted as in the Ehrenfest therm. model or similar.
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fig.1

H operator on L2(C
3N0
0 ), (symm./antisy.) wave fnct.s Ψ,

H = −
~
2

2
∆ ~X0

+ U0( ~X0) +
∑

j>0

(

U0j( ~X0, ~Xj) + Uj( ~Xj) +Kj

)

Equations of motion

(1) − i~Ψ̇( ~X0) = (H({ ~Xj}j>0)Ψ)( ~X0),

(2) ~̈
Xj = −

(

∂jUj( ~Xj) + 〈 ∂jUj( ~X0, ~Xj) 〉Ψ

)

− αj
~̇
Xj , j > 0

Dynamical sys. on phase space:
(

Ψ, ({ ~Xj}, { ~̇Xj})j>0

)

if 〈 · 〉Ψ
def
= 〈Ψ| · |Ψ〉 and αi= (rev./irr.) thermostat.
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αj
def
=

〈Wj 〉Ψ − U̇j

2Kj

, Wj
def
= − ~̇

Xj · ~∂jU0j( ~X0, ~Xj)

Evolution: Kj ≡
1
2
~̇
X

2

j

def
= 3

2
kBTjNj exact constants, (as

classical).

NOT a time dep. Schrödinger eq.: essential interaction
syst-thermos; Ehrenfest dynamics, [17],

Divergence (dissipation): σ(x) =
∑

j

( Qj

kBTj
+

U̇j

kBTj

)

(same as

in the corresponding classical case).

Equations are reversible and (expected) chaotic: Chaotic
hypothesis ⇒ SRB + FT (original one)..
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Consistency: system with a single thermostat → SRB
distrib. should be equivalent to a canonical distribution.
(True in classical case).

Candidate for µ: probability proportional to dΨ d ~X1 d ~̇X1

times

∞
∑

n=1

e−βEn( ~X1)δ(Ψ−Ψn( ~X1) e
iϕn) dϕn δ( ~̇X

2
1 − 2K1)

maybe ⇒ expectation of O is a Gibbs state of therm. equil.

with a special kind (random ~X1,
~̇
X1) of boundary condition

and temperature T1.

〈O 〉µ =Z−1
∫

∞
∑

n=1

e−βEn( ~X1)〈Ψn( ~X1)|O|Ψn( ~X1)〉δ( ~̇X
2
1 − 2K1)d ~X1

~̇X1
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〈O 〉 = Z−1
0

∫

(

Tr e−βH( ~X1) O
)

d ~X1

However is not invariant under evolution: difficult to
exhibit explicitly an invariant distribution (why should it
be easy? Aesopus, [22]), [17].

Nevertheless if adiabatic approximation (i.e. classical
motion in thermostat on a time scale much slower than
quantum evolution), [17].

Eigenstates at time 0 follow variations of Hamiltonian
H( ~X1(t)) due to thermostats motion, without changing
quantum numbers.
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Conjecture: true SRB is also equivalent to Gibbs at temp.
(kBβ)

−1: instance of equivalence.

⇒ possibility of checking FR and of defining temperature
via FR if Q is measurable absolute measurement of T ,
(originally suggested, [23], as a possible appl of FT to spin
glasses)

In presence of forcing and a single thermostat measure 〈Q 〉
and if

ζ(−p)− ζ(p) = −pσ+

use slope σ+ (in the simplest cases) to set

kBT =
〈Q 〉

σ+
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[Under time evolution a time t > 0 infinitesimal:

~X1 → ~X1 + t
~̇
X1 +O(t2)

En( ~X1) → En + t en +O(t2) with

en
def
= 〈 ~̇

X1 · ~∂ ~X1
U01 〉Ψn

+ t
~̇
X1 · ~∂ ~X1

U1 = −t (Q1 + U̇1)

e−βEn( ~X1) → e−βten

thermostat phase space contracts by etσ ≡ e
t
3N1en
2K1

Therefore if β is chosen such that β = 3N1

2K1
≡ (kBT1)

−1 the

distribution 〈 · 〉µ is stationary.]
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Graph of the Lyapunov spectra in a 15× 15 truncation for
the NS2D with viscosity and reversible viscosity (captions
ending respectively in 0 or 1). Preliminary
Supplement
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Graph of the Lyapunov spectra in a 15× 15 truncation for
the NS2D with viscosity and reversible viscosity (captions
ending respectively in 0 or 1) with points interpolated by
lines. Preliminary
Supplement
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Graph of the Lyapunov spectra in a 31× 31 truncation for
the NS2D with viscosity and reversible viscosity (captions
ending respectively in 0 or 1) with points interpolated by
lines. Preliminary
Supplement
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