
Reversibility, Navier-Stokes equations
and nonequilibrium ensembles

Recent progress has been (partly) due to

(a) Focus on stationary states out of equilibrium, [1].

(b) Modeling thermostats in terms of finite systems,
[2, 3, 4], and deterministic equations.

Finite thermostats have been essential to clarify that
reversibility and dissipation are not to be identified.

Thermostats ⇒ Equations of motion: NOT Hamiltonian ⇒
phase space contraction. BUT Time reversal =
fundamental symmetry while friction = phenomenological.

Hence the question arose, since Maxwell and Boltzmann, of
which is the meaning of the phenomenological constants
describing friction, [5, 6, 7], and more generally dissipation.
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One can investigate, here in the paradigmatic case of the
NS-equations whether

Every (even if macroscopic) dissipative evolution can be
equivalent to a reversible one, provided motions are
sufficiently chaotic, (usually are under large forcing or N).

This leads to a proposal for a general theory of equivalence
between statistical descriptions of stationary states as an
extension of the theory of equilibrium ensembles to
nonequilibrium. [8, 9, 10], inspired by the ideas on chaos, of
Ruelle and Sinai, [11, 12].

⇒ “In microscopically reversible (chaotic) systems time
reversal symmetry cannot be spontaneously broken, but only
phenomenologically so”,[13].

Begin by defining “an ensemble FC” of probab. distrib. for
NS2D equation in a periodic box of size L = 1 and subject
to a fix (large scale) force ~g, ‖~g‖2 = 1,e.g. only g±(2,−1) 6= 0
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for a velocity field u(x) =
∑

k
uke

−2π ik·x,uk = u−k:

u̇+ (~u · ~∂)u = −∂p + g + ν∆u, ∂ · u = 0 (∗)

The only parameter here is ν and Reynolds # is R = 1
ν
.

Hence as ν varies the motion defines stationary states µC
R

whose collection forms the viscosity ensemble FC

If interested in large scale observables, i.e. observables
depending only on the ~uk with |k| < K for some arbitrary
K, and in strongly chaotic regimes (i.e. R large enough),
there should be other ensembles of distrib. which attribute
same probability to K-local observables.

Mechanism: “same” as that for equilibrium ensembles in
SM, i.e. special collections of stationary states with K
playing the role of the finite volume and the truncation of
the equation to |k| < N playing the role, as N → ∞, of the
thermodynamic limit.
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In the case of the NS equations one alternative ensemble
here will be the family of stationary states for the (R-NS)
equation

u̇+ (~u · ~∂)u = −∂p+ g + α(u)∆u, ∂ · u = 0 (∗∗)

α(~u)
def
=

∑

~k
~k2 ~g~k · ~u−~k

∑

~k
~k4|~u~k|

2
,

which have α so defined that the “dissipation” observable
D(ũ) =

∫

(∂ũ(x))2dx is an exact constant of motion.

Call α(~u) a “reversible viscosity” (because the equations are
time reversible and dissipative)

Denote µM
E the stationary distr. describing statistical

properties of stationary states of (**) with D(~u) = E .

We have now two “ensembles”, i.e. collections of stationary
distributions, namely
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(1): Vary ν ≡ 1
R
and let µC

R stationary distrib. for (*)
(I-NS). Define, for each R:

E = µC
R(

∫

(∂~u)2) ≡= µC
R(D(~u))

Their collection is an “ensemble” (viscosity ensemble, FC),
[∼canonical], of distr. parameterized by ν = 1

R

(2): Next consider the new equation (R-NS) (**): it has
D(~u) =

∫

(∂~u)2 as exact constant of motion

Vary E ≡ D(~u) and let µM
E station. distrib.; define for each

E :

ν = µM
E (α(~u))

and obtain a collection of distr. parameterized by E : this is
the (enstrophy ensemble), [∼microcanonical].
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State µM
E labeled by E corresponds to state µC

R labeled by ν
⇒ and are equivalent, denoted µC

R ∼ µM
E , if i) OR ii) hold

i) E = µC
R(D(·))

ii) ν = µM
E (α(·))

in the sense that they give the same statistics in the limit of
large chaos to observables F which are “local observables”:
i.e. depend on finitely many Fourier comp. of ~u.

Analogy: “canonical” µC
β = “microcanonical” µM

E .

Why? e.g. chaoticity implies self averaging for the
observable α(u) which replaces viscosity in (**):

α(u) =

∑

k
~gk · u−k

∑

k
|~uk|2

“self − averaging′′ to ν
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A precise form of the conjecture could be
(1) define the distributions µC

R, µ
M
E as the limits

µC
R = lim

N→∞
µC
R,N , µM

R = lim
N→∞

µM
E,N

with µC
R,N , µ

M
E,N defined as the stationary distributions for

NS eq. truncated by setting uk = 0 for |ki| > N, i = 1, 2
(2) Given K-local observable F, ||F || < 1 the averages of F
with respect to a pair of equivalent distributions µC

R,N , µ
M
E,N

are related by

µC
R,N(F ) = µM

E,N(F )(1 + oK(N,R))

with oK(N,R)−−−→
N→∞

0, ∀R, and oK(N,R)−−−→
R→∞

0, ∀N

It should be stressed that the entire analysis does not
depend on (non existent if D = 3) uniqueness results on NS
and can be verbatim applied to the 3D case (defining α(u)
do that D(u) is a constant of motion).
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Problem: can reversibility be detected even in irrev. NS?

A theoretical basis can be searched in the “Chaotic
hypothesis” (GC)

Chaotic hypothesis: “think of it as an Anosov system”
(Cohen,G, if R is large), [14, 15, 11]

which is analogous to the periodicity≡ergodicity hypothesis
of Boltzmann, Clausius, Maxwell, and possibly as
unintuitive, [16, 17, 18].

Then in the reversible cases the phase space contraction

rate σN(u)
def
= div

(

α(u)∆u
)

averaged over a time τ

p
def
=

1

τ

∫ τ

0

σN(u(t))

〈 σN(·) 〉dt
(FT )

should have a PDF obeying a fluctuation relation, FR, [19].
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This means that for large τ the probability distribution of p
in µM

E (reversible viscosity ensemble) should fulfill, (see
[9, 20]).

Probτ (p)

Probτ(−p)
= eτ〈σN 〉p+o(τ), τ → ∞ (FR)

Equivalence applied to the reversible viscosity ensemble FM
E

and if extended to the observable σN (u) would imply that
σN (u) fluctuates according to FR in the corresponding FC

R .

The equivalence condition µM
E (α(u)) = 1/R should come

together (?) with a close relation between averages

µC
R(α(u)) ≃ 1/R

The above “predictions” can be tested. And one can
explore if the equivalence conjecture can be extended even
to the Lyapunov spectrum (?) (although the Lyapunov
exponents, as well as σ(u) are not local quantities).
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FigA2-64-26-26-4-15-11.0

Fig.1: At 960 modes and R = 2048: I-NS evolution of

Rα(u) = R

∑

|k|2gkuk
∑

|k|4|uk|2
“reversible viscosity”

Equivalence → time average of α should be 1

R
. Represents

the fluctuating values of α at intervals of 5 · 215 integration
steps of size 2−15; the middle line is the running average of
α and it converges to 1

R
(horiz. line).
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The graph gives the values only every 5 · 215 integration
steps (it would be too dense at every 215).

The experiments are carried using a truncated version of
the I-NS eq. with cut-off at |ki| < N : the conjecture
requires the limit N → ∞, or R → ∞: hence it can be
tested only by trying to compare stability of results with
increasing N or R and (so far the max N reached is
N = 15, but work is in progress).

The attractor might be considered reached, for instance if
the running average of the reversible viscosity is close to 1

R
:

however wild fluctuations remain and the statistics can be
sampled to check whether the FR applies.

For comparing revers. and irrevers. Lyapunov spectra it
should be necessary to compute a large number time steps.

This is being attempted: a few preliminary data follow
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It is interesting to present a few recent (mostly preliminary)
results (encouraging but need further confirmation).
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FigL2-16-30-30-11-16 11-01

Fig.2: T -Local Lyapunov spectrum: 48 modes (7× 7) of
NS2D: (+)= viscous, (×)= reversible and R = 2048.
Integration step 2−16, T = 2048, integration steps 230.
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FigL2-32-30-30-7-17 11-01

Fig.3: Graph of the Lyapunov spectra in a 15× 15
truncation for the NS2D with viscosity and reversible
viscosity (captions ending respectively in 0 or 1) with (the
224 points) interpolated by lines, R = 2048. 914 exponents
evaluated every 217 integration steps.
rutgers 02-11-2017 13/22



It is interesting to look at the fluctuations of D(u) in the
I-NS while the Lyapunov exponents of the previous Fig.3
are measured:
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FigEn-32-30-30-7-17 11.0

Fig.4: enstrophy history (every 217 integration steps),
running average and precomputed average of E .
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The evolution of the reversible viscosity Rα(u) measured in
the I-NS (i.e. irreversible) evolution while the same local
exponents in Fig.3 are computed is illustrated as:
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FigA3-32-30-30-7-17 11

Fig.5: I-NS evolution of the reversible viscosity Rα(u) in the

same time interval as Fig.4 (and in the computation of Fig.3).
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Fig.6: R-NS evolution of Rα(u): reversible viscosity, history,

running average, and level 1.
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The relative values of the local L. exponents is
indistinguishable in the graphs above; following two figures
draw the relative difference between the local exponents
represented, respectively, in Fig.2 and Fig.3 (in percent):
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FLer-16-30-30-11-16 11

Fig.7: relative difference of corresponding exponents in Fig.2.

The agreement between the corresponding Lyapunov
exponents is below 2% except for the (seven) exponents
close to 0. It is below 5% except of four exponents.
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Fig.8: relative difference of corresponding exps. in Fig.3.

The relative sizes are defined as 100 times the absolute
value of the difference of correspoanding exponents divided
by the maximum value of the two.
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Remarks: (1) The NS equations can be regarded, for large
scale observables, as statistically equivalent to the motion
of N microscopic particle subject to thermostats keeping
for instance the total energy constant.

Then the microscopic motion is certainly chaotic at all R
and this suggested that equivalence might hold at all R
(even in the laminar regime or mildly chaotic flows where
there may be several stationary states, [21]: a situation
similar to the equivalence between ensembles in equilibrium
and in presence of phase transitions).

(2) The observable D(~u) should not play a special role: it
could be replaced by other “global” oservables, e.g. by the
energy

∫

~u(x)2dx. Some evidence for this has been found in
[22] but doubts are raised in [23].
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(3) And, as in Statistical Mechanics, it should be
possible to fix more than a single observable thus
generating many equivalent ensembles.

(4) The analysis applies word-by-word to NS3D: in that
case it is even more interesting as there is a natural
truncation at Kolmogorov scale. An important simulation,
[4], has been performed on a 1283 truncation of NS3D at

scale > O(R
3
4 ) imposing many constraints: namely the

energy content of each shell (i.e. uk with 2n < |k| ≤ 2n+1

→ “ n-th shell”) was fixed to the OK41-value (following the
5
3
power law) obtaining a stationary state (at high R)

which on large scale observables is the same as the
unconstrained evolution. See also [24].

(5) The conjecture here would say that fixing just one
observable, namely the dissipation D(u), should be
sufficient at large R or N for local observables statistics.
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(6) A final remark: since the reversible viscosity model is
reversible it is tempting to try to connect the fluctuations
of the dissipation with the “fluctuation relation”,
[15, 9, 20]. This leads to think that

(a) A new ensemble equivalent to FC ,FM could be
constructed replacing the viscosity with a white Gaussian
process, with average satisfying the fluctuation relation (?)

(b) Are the fluctuations of the reversible friction observed
in the irreversible evolution a stochastic process obeying a
fluctuation relation (see Fig. above)? a further way to
reveal reversibility in the irreversible evolution ?
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