
Statistical ensembles out of equilibrium: turbulence

Equilibrium states ⇒ N = ρV particles in volume V and
interaction potential U(q) ⇒ probability distributions
determining average values of many observables

1) i.e. local observables O ∈ Oloc: O(p,q), depend on
qi ∈ q located in regions Λ ⊂ V .

2) distributions depend on equations of motion.

Which among the invariant prob. distr. is the correct one?
For isolated systems Ergodic Hypothesis (EH) provides (a)
solution: for a.a. data u = (p,q)

µE(dpdq) =
1

Z
δ(HV (p,q))dpdq

As the energy E = eV varies the distributions are collected
in Emc,V

E , microcanonical ensemble.

L’Aquila, November 28 2019 1/30



Why? data are always generated randomly with a
unknown distribution which however is (taciltly ?) assumed
of the form ρ(u)du.

If system is chaotic (e.g. hyperbolic) it is a theorem that
a.a data u evolve visiting sets with well defined frequency
independent of the unknown distribution for the data
generation, called the SRB distribution.

This asymptotic behavior only depends on the
hyperbolicity of the motion on phase space or, in the case
of dissipative evolution, on the attracting set.

The two remarks contain the essence of Ruelle’s proposal:

“the initial data are random with distr, ρ(u)du (unknown
but absolutely cont.) and motions are “generically” chaotic
so that the statistics of the motions is uniquely determined
as the SRB distribution”
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If account is taken that only few observables are physically
interesting then other distributions might provide the same
averages for the interesting observables, particularly in the
case of macroscopic systems, and can be collected in other
“ensembles” EV

β . For instance the canonical distrib.

µc,V
β (dpdq) =

1

Z
e−βHV (p,q)dpdq

The apparent resulting ambiguity is solved, in equilibrium,
by the equivalence between distrib. in Emc,V

E and E c,V
β :

“canonical distribution µV
β ∈ E c is equivalent to the

microcanoical µ̃V
E ∈ Emc if β, E are s.t.

µV
β (HV (p,q)) = E ⇒ lim

V→∞
µV
β (O) = lim

V→∞
µ̃V
E(O)

and µ’s are“equivalent in the thermodynamic limit”.
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Ruelle’s generalization of EH unifies equilibrium and
nonequilibrium and assumes that generically chaotic
systems are such in the precise sense of Axiom A implies
also in nonequilibrium ⇒ unique statistics for the
stationary states.

Axiom A can be simplified (Cohen & G) replacing it with
“generically” chaotic motions evolve towards a smooth
attracting surface over which motion is chaotic in the sense
of Anosov (stronger than Axiom A): Chaotic hypothesis or
CH.

Hence is natural to ask whether a theory of ensembles (i.e.
of families of distr.) in 1-to-1 correspondence yield
equivalent statistical descriptions for same stationary state.
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Any theory of large (macrosc.) systems ⇒ requires

(1) Regularization of equations (via a ”cut off”)

(2) Restriction on observables (“local observables”)

Regularization, necessary in essentially all cases, replaces
u̇ = fR(u) (∞-dim) by a regularized u̇ = fV

R (u) (< ∞-dim).

Stationary µV
R(du) uniquely determined by Ruelle’s

extension of ergodic hypothesis (i.e. SRB distrib.).

Form a family EV
R of distributions assigning average values

to the restricted observables.
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For instance:

(a) In Stat. Mech: local observables and cut-off V =
container size; ⇒ find their averages at limit as V → ∞:

(b) In Fluid Mech.: large scale observables (i.e. functions of
velocities with “waves” |k| < K ≪ N) and cut-off N on the
maximum wave |k|: ⇒ find averages at limit as N → ∞
Concentrate on the paradigmatic case of periodic NS fluid,
[1, 2].
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(a) 2/3-Dim., incompressible,

(b) fixed large scale forcing F (e.g. with only one or
few Fourier’s waves and ‖F‖2 = 1),

(c) dissipate heat via viscosity ν = 1

R

NSirr: u̇α = −(u · ∂)uα − ∂αp +
1
R
∆uα + Fα, ∂αuα = 0

Velocity: u(x) =
∑

k 6=0 uk
ik⊥

|k|
eik·x, uk = u−k (NS-2D)

NS2,irr: u̇k = −∑
k1+k2=k

(k⊥

1 ·k2)(k2
2−k2

1)

2|k1||k2||k|
uk1uk2 − νk2uk + fk

“Regularize eq.”: waves |kj | ≤ N . At UV -Cut-off , N .

Remark: Iuα = −uα implies solutions t → Sirr
t u s.t.

ISirr
t 6= Sirr

−t I ⇒ irreversibility

L’Aquila, November 28 2019 7/30



Given init. data u, evolution u → Sirr
t u generates a steady

state (i.e. a SRB probability distr.) µirr,N
R on MN .

Unique out a 0-volume of u’s, for simplicity AT R small:
“NS gauge symmetry” exists.; phase transitions, [3, 4, 5].

As R varies steady distr. µirr,N
R (du) are collected in E irr,N :

This is A statistical ensemble of stationary nonequilibrium
distrib. for NSirr.

Average energy ER, average dissipation EnR, Lyapunov
spectra (local and global) ... will be defined, e.g.:

ER =
∫
MN

µirr,N
R (du)||u||22, EnR =

∫
MN

µirr,N
R (du)||ku||22

Are there other ensembles whose elements can be
put in 1− 1 correspondence with the ones in E irr,N

and give same average values to “local obsevables”?
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Consider new equation, NSrev (with cut-off N):

u̇k =
∑

k1+k2=k

(k⊥
1 · k2)(k

2
2 − k2

1)

2|k1||k2||k|
uk1

uk2
− α(u)k2uk + fk

with α s. t. D(u) = ||ku||22 = En (the enstrophy)is exact
const of motion on u → Srev

t u.:

⇒ α(u) =

∑
k k

2F−kuk∑
k k

4|uk|2
e.g . D = 2

New eq. is reversible: ISrev
t u = Srev

−t Iu (as α is odd).

α is “a reversible viscosity”; (if D = 3 α is ∼different)

Rev. eq. is an empirical model of “thermostat” on the fluid
and should (?) have same effect of empirical constant
friction (that can also be a thermostat model).
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NSrev generates a family of steady states Erev,N on MN :
µrev,N
En parameterized by constant value of enstrophy En.

α(u) in NSrev will wildly fluctuate at large R (i.e. small
viscosity ν) thus “self averaging” to a const. value ν
“homogenizing” the eq. into NSirr with viscosity ν.

Equivalence mechanism by analogy with Stat. Mech.

(1) analog of “local observables”: functions O(u) which
depend only on uk with |k| < K. “Locality in momentum”

(2) analog of “Volume”: just the cut-off N confining the k

(3) analog of “state parameter”: viscosity ν = 1
R
(irrev.

case) or enstrophy En (rev. case).
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Equivalence condition : µrev,N
En (α) =

1

R

Equivalence is conjectured at N = ∞ in analogy with the
thermodynamic limit V → ∞, for all R.

Averages of large scale observables same as N → ∞ for

µirr,N
R ∈ E irr,N and µrev,N

En ∈ Erev,N

provided, D(u)
def
=

∑
k k

2|uk|2 is s.t.

µirr,N
R (D) = En, or µrev,N

En (α) =
1

R
= ν
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Balance: multiplying NS eq. by uk and sum on k:

1

2

d

dt

∑

k

|uk|2 = −γD(u) +W (u), γ = ν or α(u)

(transport terms = 0, D = 2, 3), D(u) =
∑

k k
2|uk|2 =

enstrophy and W =
∑

k fku−k = power of external force.

Remark that W is a local observable
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Hence time averaging

1

R
µirr,N
R (D) = µirr,N

R (W ), µrev,N
En (α)En = µrev,N

En (W )

But W is local (as f is such) and, if the conjecture holds,
has equal average under the equivalence condition: hence
µirr,N
R (D) = En implies the relation

lim
N→∞

Rµrev,N
En (α) = 1

This becomes a first rather stringent test of the conjecture.
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But it will be useful to pause to illustrate a few prelimnary
simulations and checks.

Unfortunately the following simulations are in dimension 2
(D = 3 is at the moment beyond the available (to me)
computational tools) although present day available NS
codes should be perfectly capable to perform detailed
checks in rapid time, [6].

Concentrate on the first test:

lim
N→∞

Rµrev
En(α) = 1
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FigA32-19-17-11.1-detail

Fig.1 (detail): Running average of reversible friction

Rα(u) ≡ R
2Re(f−k0

uk0
)k2

0∑
k k4|uk|2

, superposed to conjectured 1 and to

the fluctuating values of Rα(u). Initial transient t < 800.

Evol.: NSrev, R=2048, 224 modes, Lyap. ≃ 2, x-unit = 219
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FigA32-19-17-11.1-all

Fig.1-bis: As previous fig. but time 8 times longer: data

reported “every 10”, or black.
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FigEN32-19-17-11.1

Fig.2: NSirr: Running average of the work R
∑

k F−kuk|
(violet) in NSrev; and convergence to average enstrophy En

(orange straight line),
blue is running average of enstrophy

∑
k k

2|uk|2 in NSirr,

enstrophy fluctuations violet in NSirr: R=2048.

L’Aquila, November 28 2019 17/30



Unexpected
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Fig.3: Fluct. max.-min. showing the N =3968
NSrev-exponents. Central lines rev-irr. superposed
averaged over 800 samples with remarkable coincidence of
NSrev with the NSirr exponents. Strong fluct. between
max-min variations (upper and lower lines)
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The following Fig.4 (similar to Fig.1 but w. NSirr):
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Fig.4: As Fig.1 but running average of reversible friction Rα(u)

regarded as observ. in NSirr, superposed ro value 1 and to

fluctuating values of Rα(u). An extension ? of conjecture since

α(u) is not local.
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The figure suggests (from the theory of Anosov systems):
Check the “Fluctuation Relation” in the reversible
evolutions: for the divergence (trace of the Jacobian)
σ(u) = −∑

k ∂uk
(u̇k)rev: let p (time τ average of σ

〈 σ 〉
)

p
def
=

1

τ

∫ τ

0

σ(u(t))

〈σ 〉irr
dt,

then a theorem for Anosov systems:

Psrb(p)

Psrb(−p)
= eτ 1p 〈σ 〉irr(sense of large deviat. as τ → ∞)

Replacing reversible evolution with irreversible but
studying the reversible divergence becomes a “reversibility
test on the irreversible flow”!
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Can this be applied to turbulence ? However:

Problem 1: if attracting set A has lower dimension, time
reversal symmetry I cannot be applied because IA 6= A.
This certainly occurs if N becomes large enough, [7, 8].

Help could come if exists further symmetry P between A
and IA commuting with St: PSt = StP .

Then P ◦ I : A → A becomes a time reversal symmetry of
the motion restricted to A.

Problem 2: even supposing existence of P , still is is not
possible to apply FR because, at best, it would concern the
contraction σA(u) of A and not the σ(u) of MV .

The σ(u) receives contributions from the exponential
approach to A: which obviously do not contribute to σA.

How to recognize such contributions ?
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Help for both problems could come from “pairing property”
Often Lyapunov exps (local and global) arise in pairs with
almost constant average or average on a regular curve.

In a few systems pairs have an exactly constant average.

An idea can be obtained from the local exponents
(eigenvalues of the symmetric part of Jacobian matrix).

For instance NS seems to enjoy a pairing rule: the following
figure illustrates it (at strong regularization and the large
Reynolds number); looks close to exact (at graph scale!).

Pairing in NS cannot stay at all regularizations: the above
should be considered due to the small N . However it has
been proposed that the apparent “pairing line” becomes at
large N a “pairing curve” (as apparently so at small R).
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Fig.5: R = 2048, 3968modes, local exponents ordered
decreasing: s.t. λk, 0 ≤ k < d/2,
and increasing λd−k, 0 ≤ k < d/2,
the line 1

2
(λk + λd−1−k) and the line ≡ 0. Irreversible case

and apparent pairing rule and dimensional loss ϕ ≃ 1500
1980

.
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In Anosov reversible systems the number of positive exp. =
number of negative: hence proposal, [9, p.445],[10],

“attracting surface A dimension = twice the number of
positive exponents” and

if pairing: twice num. of opposite sign pairs.

Implication: σA(u) is proportional to the total σ(u) if
pairing to a constant

σA(u) = ϕσ(u), ϕ =
number of opposite pairs

total number of pairs

(for pairing to a more general curve
σA(u) = σ(u) +

∑
pairs<0(λj + λ′

j)). Why?

Idea: negative pairs correspond to exponents associated
with attraction to A: hence irrelevant in computating σA.
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Assuming existence of P , hence time-reversal on
attractor, and pairing + CH ⇒ FR but slope ϕ < 1:

τpϕσ, rather than τpσ : in fig. ϕ ≃ 1550

2490

If true: this will be a “check of reversibility” in NSirr.
More elaborate checks are being attempted: [6, 11] +

(a) moments of large scale observables rev & irr

(b) local Lyap. exps of matrices different from Jacobian

(c) check of the fluctuation rel., particularly in irrev. cases,
(shown above to be accessible already with 960 modes and
R = 2048): ⇒ FR with slope ϕ < 1 (Axiom C ?), [9, 12].

(d) More values of R and N an example with R larger than
in the preceding cases yields similar results (not shown).
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Example of moments of local observables:
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Fig.6: Running averages in NSrev of
(|Reu11|4 + |Imu11|4)/〈 |Reu11|4 + |Imu11|4 〉irr,
R = 2048, 960 modes. Conjecture yields ratio tending to 1
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Fig.7: Same running averages in NSrev of
(|Reu11|4 + |Imu11|4)/〈 |Reu11|4 + |Imu11|4 〉irr, and
their rev. fluctuations, for R = 2048, 960 modes.
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Concluding the simulation
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Fig.8: Illustration of the conjecture on a 3968 modes NS:
the running averages of Rα in the reversible NS should
tend to 1, according to conjecture.
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Finally rigorous estimate of number N of Lyap. exp.
needed so that their sum remains > 0:

≤̃
√
2A(2π)2

√
R
√
REn,A = 0.55..

in dimension 2, while at dimension 3 a similar estimate
holds but it involves a norm different from the enstrophy.
(Ruelle if d = 3 and Lieb if d = 2, 3, [13, 8]).

Applied here it would require N ∼ 2.104 for NS 2D: not
accessible in the simulations presented here but not
impossible in principle with available computers and
computation methods already available, at least if D = 2.

Finally further careful checks are required, particularly
since inspiring ideas are, to say the least, controversial as
shown by quotes from a well known treatise, [14, p.344-347]
and [2, app.A].
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