
Statistical ensembles out of equilibrium: turbulence

Equilibrium states ←→ different probability distributions,
e.g. canonical or microcanonical:
Reminder:

ρV particles in volume V ⇒ families Emc, E c, . . . of
distributions; elements “parameterized” by E, β,. . .

1) “observables of interest”: local observables O ∈ Oloc:
O(p,q), depend on qi ∈ q with qi ∈ Λ, Λ = volume ≪ V

2) distributions µV
β ∈ E c and µ̃V

E ∈ Emc are correspondent
if β, E are s.t.

µV
β (HV (p,q)) = E ⇒ lim

V→∞
µV
β (O) = lim

V→∞
µ̃V
E(O)

and µ’s are“equivalent in the thermodynamic limit”.
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Is it possible a similar description of the stationary states
of nonequilibrium systems?

The ergodic hypothesis for isolated mechanical systems
states that if the initial data u = (p,q) are chosen with any

absolutely continuous distribution ρ(u)du on the energy

surface HV (u) = E, then u evolve under the Hamiltonian
eq. and visits arbitrary regions D proportionally to their
Liouville measure (which is invariant).

The statitical properties of almost all data are therefore
uniquely determined

Ruelle’s idea is that the same remains true: because
(a) in any observation initial data are generated by
protocols which yield data u inevitably subject to errors
and it is tacitly supposed, (in labs or computers), that any
protocol generates data with probability distribution
ρ(u)du absolutely continuous. However ρ(u) is unknown.
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(b) If a system is strongly chaotic (e.g. in the sense of
Smale’s axiom A) then it is a theorem that with probab. 1
data chosen with any absolutely cont. ρ(u)du generate
ρ-independent stationary distribution ( in general not
absolutely continuous).
Ruelle’s proposal is that generically chaotic systems are
such in the precise sense of Smale.

The idea has been adopted by Cohen and G replacing
axiom A with the assumption that chaotic motions evolve
towards a smooth attracting surface over which motion is
chaotic in the sense of Anosov (stronger than Axiom A):
named Chaotic hypothesis or CH.

Anosov systems are well understood, (Anosov and Sinai),
and play in chaotic dynamics what harmonic oscillators do
for regular dynamics. Good examples are geodesic flow on a
< 0 curvature, or hyperbolic homeomorphism of 2D-torus.
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For systems satisfying the CH there is a unique stationary
distribution generated by initial data chosen as described,
and it is called SRB distribution.

This is similar to the situation arising in equilibrium: then
are there other stationary distributions that can be
considered equivalent to the SRB distribution as in the case
of quilibrium there are many other ones equivalent to the
Liouville distrib. ? and is it possible to use such
distributions to derive general laws for the behavior of non
equilibrium stationary systems?

Is it possible to develop a nonequilibrium thermodynamics
based on the SRB distributions as in equilibrium it is
possible using the Liouville’s distributions?

This is now examined in the NS flow in 2D or 3D
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In general evolution eq. of u on “phase space’’ M (∞-dim.)
depending on a parameter R is written:

u̇ = fR(u) (formally)

“Difficult”:even existence-1-qness open (in most cases).

In any theory of large (macroscopic) systems theories are
based on two key points

(1) Regularization of equations (via a ”cut off”)

(2) Restriction on observables (“local observables”)
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Regularization, necessary in essentially all cases, replaces
fR(u) (∞-dim) by a regularized fV

R (u) (finite dimensional).

Stationary distrib. µV
R(du) will be uniquely determined by

Ruelle’s extension of ergodic hypothesis (i.e. SRB distrib.).

Form a family EVR of distributions assigning average values
to the restricted observables.

(a) Stat. Mech: looks at local observables and cut-off V =
container size; ⇒ find their averages at limit as V →∞:

(b) Fluid Mech.: looks at large scale onservables (i.e.
functions of velocities with “waves” |k| < K ≪ N) and
cut-off N on the maximum wave |k|: ⇒ find averages at
limit as N →∞
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Once physical observables are restricted, several equations
could describe stationary states (expected (?)).

E.g. ρV point particles described by
(a) Hamilton eq.s or also
(b) by the isothermal equations, [1],

q̇ = p, ṗ = −∂qU(q)− α(p,q)p

where α(p,q) = −p·∂qU

p2 = multiplier impose T (p) = const.

Stationary states of the two equations are parameter. by
energy E = eV or kinetic energy 3ρV

2
kBT = 3ρV

2
β−1 and

(a) µmc,V
E = δ(H(p,q)− E)dpdq or, respectively :

(b) µc,V
β = e−β0U(q)δ(T (p)−Nβ−1)dpdq, β0 = β(1− 1

3N
)

Equivalent (on local onservables) if
µc,V
β (H) = E ⇒ limV→∞ µc,V

β (O) = limV→∞ µmc,V
E (O).
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Interesting cases arise when equations obey a fundamental
symmetry but may be phenomenologically described by non
symmetric equations (spontaneously broken symmetry).

Since a fundamental symmetry cannot be broken it is to be
expected that the same system can be described equally
well by symmetric eqs. (equivalent on special observables).

Consider, as a typical case, the Navier-Stokes equations.

Incompressible fluid can be described by Euler eq.s subject
to a thermostat adapting the pressure to the heat due to
the viscosity: turning the equations into time-reversal
breaking ones.

Paradigmatic case is periodic NS fluid, [2, 3],
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(a) 2/3-Dim., incompressible,

(b) fixed large scale forcing F (e.g. with only one or
few Fourier’s waves and ‖F‖2 = 1),

(c) with thermostat. to dissipate heat via viscosity ν = 1

R

(consistently p = P (τ, T )).

NSirr: u̇α = −(u · ∂)uα − ∂αp +
1
R
∆uα + Fα, ∂αuα = 0

Velocity: u(x) =
∑

k 6=0 uk
ik⊥

|k|
eik·x, uk = u−k (NS-2D)

NS2,irr: u̇k =
∑

k1+k2=k

(k⊥

1 ·k2)(k2
2−k2

1)

2|k1||k2||k|
uk1uk2 − νk2uk + fk

Iuα = −uα implies ISirr
t 6= Sirr

−t I, ⇒: irreversibility.

“Regularize eq.”: waves |kj | ≤ N . At UV -Cut-off , N .
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Given init. data u, evolution u→ Sirr
t u generates a steady

state (i.e. a SRB probability distr.) µirr,N
R on MN .

Unique out a 0-volume of u’s, for simplicity [AT R small:
“NS gauge symmetry” exists.; phase transitions, [4, 5, 6].

As R varies steady distr. µirr,N
R (du) are collected in E irr,N :

A statistical ensemble of stationary nonequilibrium
distrib. for NSirr.

Average energy ER, average dissipation EnR, Lyapunov
spectra (local and global) ... will be defined, e.g.:

ER =
∫
MN

µirr,N
R (du)||u||22, EnR =

∫
MN

µirr,N
R (du)||ku||22
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Consider new equation, NSrev (with cut-off N):

u̇k =
∑

k1+k2=k

(k⊥
1 · k2)(k

2
2 − k2

1)

2|k1||k2||k|
uk1

uk2
− α(u)k2uk + fk

with α s. t. D(u) = ||ku||22 = En (the enstrophy)is exact
const of motion on u→ Srev

t u.:

⇒ α(u) =

∑
k k

2F−kuk∑
k k

4|uk|2
e.g . D = 2

New eq. is reversible: ISrev
t u = Srev

−t Iu (as α is odd).

α is “a reversible viscosity”; (if D = 3 α is ∼different)
Rev. eq. is an empirical model of “thermostat” on the fluid
and should (?) have same effect of empirical constant
friction (that can also be a thermostat model).
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NSrev generates a family of steady states Erev,N on MN :
µrev,N
En parameterized by constant value of enstrophy En.

α(u) in NSrev will wildly fluctuate at large R (i.e. small
viscosity ν) thus “self averaging” to a const. value ν
“homogenizing” the eq. into NSirr with viscosity ν.

Of course could impose multiplier [7, 8]

α′(u) =
∑

k fkuk∑
k |k|2|uk|2

: it would fix energy E =
∑

k |uk|2.

Equivalence mechanism by analogy with Stat. Mech.

(1) analog of “local observables”: functions O(u) which
depend only on uk with |k| < K. “Locality in momentum”

(2) analog of “Volume”: just the cut-off N confining the k

(3) analog of “state parameter”: viscosity ν = 1
R
(irrev.

case) or enstrophy En (rev. case) (or energy E ?).
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Equivalence condition : µrev,N
En (α) =

1

R
Equivalence is conjectured at N =∞ corresponding to
the Thermodynamic limit V →∞, for all R.

Averages of large scale observables will tend to the same
values as N →∞ for µirr,N

R ∈ E irr,N of NSirr and for

µrev,N
En ∈ Erev,N provided, D(u) def

=
∑

k k
2|uk|2 is s.t.

µirr,N
R (D) = En, or µrev,N

En (α) =
1

R
= ν

Balance: multiplying NS eq. by uk and sum on k:

1

2

d

dt

∑

k

|uk|2 = −γD(u) +W (u), γ = ν or α(u)

(transport terms = 0, D = 2, 3), D(u) = ∑
k k

2|uk|2 =
enstrophy and W =

∑
k fku−k = power of external force.
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Hence time averaging

1

R
µirr,N
R (D) = µirr,N

R (W ), µrev,N
En (α)En = µrev,N

En (W )

But W is local (as f is such) and, if the conjecture holds,
has equal average under the equivalence condition: hence
µirr,N
R (D) = En implies the relation

lim
N→∞

Rµrev,N
En (α) = 1

This becomes a first rather stringent test of the conjecture.

Since the equivalence rests on the rapid fluctuations of α(u)
a second idea is that if N is kept finite then, more
generally, if O is a large scale observable it should be:

µirr,N
R (O) = µrev,N

En (O)(1+o(1/R)) if µirr,N
R (D) = En

So a parallel (different) idea arises: i.e. N →∞ and R
fixed can be replaced by N fixed and R→∞.
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But it will be useful to pause to illustrate a few prelimnary
simulations and checks.

Unfortunately the following simulations are in dimension 2
(D = 3 is at the moment beyond the available (to me)
computational tools) although present day available NS
codes should be perfectly capable to perform detailed
checks in rapid time, [8].

Concentrate on the first test:

lim
N→∞

Rµrev
En(α) = 1
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FigA32-19-17-11.1-detail

Fig.0 (detail): Running average of reversible friction

Rα(u) ≡ R
2Re(f−k0

uk0
)k2

0∑
k k4|uk|2

, superposed to conjectured 1 and to

the fluctuating values of Rα(u). Initial transient t < 800.

Evol.: NSrev, R=2048, 224 modes, Lyap. ≃ 2, x-unit = 219
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Fig.1: As previous fig. but time 8 times longer: data reported

“every 10”, or black.
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Fig.2: NSirr: Running average of the work R
∑

k F−kuk|
(violet) in NSrev; and convergence to average enstrophy En

(orange straight line),
blue is running average of enstrophy

∑
k k

2|uk|2 in NSirr,

enstrophy fluctuations violet in NSirr: R=2048.
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unexpected ?, [7]:
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FigL16-19-17-11.01

Fig.3: Spectrum (local) Lyapunov V=48 modes reversible &

irreversible superposed; R=2048.

The difference can be made visible as:

Tufts, November 12 2019 20/27



�

�✁�✂

�✁�✄

�✁�☎

�✁�✆

�✁�✝

�✁�✞

� ✝ ✂� ✂✝ ✄� ✄✝ ☎� ☎✝ ✆� ✆✝ ✝�

✟✠�✂✡✞���✡✂����✟ ☛ ✂☞☎

✟✠�✂✡✞���✡✂����✟ ☛ ✂☞☎

�✁�✂

FigDiff16-191711-01

Fig.4: Relative Difference of (local) Lyap. exponents in Fig.
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Fig.5: More local Lyapunov spectrum in 15× 15 modes (i.e.
for NS2D rever. & irrev. R = 2048, 240 modes on 219 steps.
Spectra evaluated every 4 time units. (and averaged over
200 samples).
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Fig.6: Relative difference of the (local) Lyapunov exp. of the

preceding fig. 240 modes. The line is the 4% level.
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The following Fig.7 (similar to Fig.1 but w. NSirr):
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Fig.7: As Fig.1 but running average of reversible friction Rα(u)

regarded as observ. in NSirr, superposed ro value 1 and to

fluctuating values of Rα(u). An extension ? of conjecture since

α(u) is not local.
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The figure suggests (from the theory of Anosov systems):
Check the “Fluctuation Relation” in the irreversible
evolution: for the divergence (trace of the Jacobian)
σ(u) = −∑

k ∂uk
(u̇k)rev: let p (time τ average of σ

〈 σ 〉
)

p
def
=

1

τ

∫ τ

0

σ(u(t))

〈σ 〉irr
dt,

then a theorem for Anosov systems:

Psrb(p)

Psrb(−p)
= eτ 1p 〈σ 〉irr (sense of large deviat. as τ →∞)

it is a “reversibility test on the irreversible flow”

Anosov systems play the role, in chaotic dynamics
that harmocic oscillators cover for ordered motions.
They are a paradigm of chaos. Are NS Anosov systems?

Tufts, November 12 2019 25/27



The idea is based on Sinai (for Anosov syst.), Ruelle,
Bowen (for Axioms A syst.),[9, 10, 11] Chaotic hypothesis.

Can this be applied to turbulence ? However:

Problem 1: if attracting set A has lower dimension, time
reversal symmetry I cannot be applied because IA 6= A.
This certainly occurs if N becomes large enough, [12, 13].

Help could come if exists further symmetry P between A
and IA commuting with St: PSt = StP .

Then P ◦ I : A → A becomes a time reversal symmetry of
the motion restricted to A. And there are geometrical
conditions which in special cases guarantee existence of P
(“Axiom C” systems, [14]).
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Problem 2: even supposing existence of P , still is is not
possible to apply FR because, at best, it would concern the
contraction σA(u) of A and not the σ(u) of MV .

The σ(u) receives contributions from the exponential
approach to A: which obviously do not contribute to σA.

How to recognize such contributions ?

Help could come from “pairing rule”

Often Lyapunov exps (local and global) arise in pairs with
almost constant average or average on a regular curve.

In a few systems pairs have an exactly constant average.

An idea can be obtained from the local exponents
(eigenvalues of the symmetric part of the evolution
Jacobian matrix).

For instance NS seems to enjoy a pairing rule:
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Fig.8: R = 2048, 960modes, local exponents ordered
decreasing: s.t. λk, 0 ≤ k < d/2,
and increasing λd−k, 0 ≤ k < d/2,
the line 1

2
(λk + λd−1−k) and the line ≡ 0. Irreversible case

and apparent pairing rule
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490
.

R = 2048, 960 modes.
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The figures indicate:
(a) can check: revers. and irrrev. exps are very close: (but
this does not follow from the conject. as exps are not
local observables) → suggests: possible equivalence for a
larger class of observables.

(b) It has been proposed, [15, p.445],[7], that attracting
surface A dimension = twice the number of positive
exponents: hence in cases of pairing it is twice num. of
opposite sign pairs.

Implication: σA(u) is proportional to the total σ(u) if
pairing to a constant

σA(u) = ϕσ(u), ϕ =
number of opposite pairs

total number of pairs

and in the case of pairing to a more general curve
σA(u) = σ(u) +

∑
pairs<0(λj + λ′

j). Why?
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Idea: negative pairs correspond to the exponents associated
with the attraction to A: hence do not count for the
computation of σA.
The FR will hold, by the C.H., but with a slope ϕ < 1:

τpϕσ, rather than τpσ : in fig. ϕ ≃ 450

490

If true: this will be a “check of reversibility” in NSirr.
More elaborate checks are being attempted: [8, 16] +

(a) moments of large scale observables rev & irr

(b) local Lyap. exps of matrices different from Jacobian

(c) check of the fluctuation rel., particularly in irrev. cases,
(shown above to be accessible already with 960 modes and
R = 2048): ⇒ FR with slope ϕ < 1 (Axiom C ?), [15, 17].

(d) More values of R and N an example with R larger than
in the preceding cases yields similar results (not shown).
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Example of moments of local observables:
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Fig.10: Running averages rev of
(|Reu11|4 + |Imu11|4)/〈 |Reu11|4 + |Imu11|4 〉irr, R = 2048,
960 modes. Conjecture yields ratio tending to 1
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Fig.11: Same running averages rev of
(|Reu11|4 + |Imu11|4)/〈 |Reu11|4 + |Imu11|4 〉irr, for
R = 2048, and their rev. fluctuations, 960 modes.
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Concluding the simulation
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Fig.12: Illustration of the conjecture on a 3968 modes NS:
the running average of Rα in the reversible NS should tend
to 1, according to conjecture.
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Finally rigorous estimate of number N of Lyap. exp.
needed so that their sum remains > 0:

≤̃
√
2A(2π)2

√
R
√
REn,A = 0.55..

in dimension 2, while at dimension 3 a similar estimate
holds but it involves a norm different from the enstrophy.
(Ruelle if d = 3 and Lieb if d = 2, 3, [18, 13].

Applied here it would require N ∼ 2.104 for NS 2D: not
accessible in the simulations presented here but not
impossible in principle with available computers and
computation methods already available, at least if D = 2.

Finally further careful checks are required, particularly
since inspiring ideas are, to say the least, controversial as
shown by quotes from a well known treatise, [19, p.344-347]
and [3, app.A].
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