Kondo problem: paradigm of RG application

G.Benfatto, I.Jauslin \& GG

1-d lattice, fermions+impurity, "Kondo problem"

$$
\begin{aligned}
H_{h} & =\sum_{x=-L / 2}^{L / 2-1} \psi^{+}(x)\left(-\frac{1}{2} \Delta-1\right) \psi^{-}(x)+h \tau^{z} \\
H_{K} & =H_{h}-\lambda \psi^{+}(0) \sigma^{j} \psi^{-}(0) \tau^{j}=H_{h}+V
\end{aligned}
$$

(1) $\psi_{\alpha}^{ \pm}(x)$ C\&A operators, $\sigma^{j}, \tau^{j}, j=1,2,3$, Pauli matrices
(2) $x \in$ unit lattice, $-L / 2, L / 2$ identified (periodic b.c.)
(3) $\Delta f(x)=f(x+1)-2 f(x)+f(x-1)$ discrete Laplacian.

Alternative model $\boldsymbol{\tau} \rightarrow d^{+} \boldsymbol{\tau} d^{-}$with $d^{ \pm}$fermion (Wilson, Andrei models).
$\lambda<0=$ antiferrom., $\lambda>0$ ferrom.

No interaction $(\lambda=0): 1$ impurity and $\beta h<1(e . g . h=0)$

$$
\chi(\beta, h) \propto \beta \underset{\beta \rightarrow \infty}{\longrightarrow} \infty, \quad \forall L \geq 1, \beta h<1
$$

Interaction (classical) 1 elec.\&1 impurity:

1) field on impurity $\& \lambda \neq 0$

$$
\chi(\beta, 0)=0 \quad \text { repulsive }, \quad+\infty \quad \text { attractive }
$$

2) Still true if $L<\infty$ classic\&quantum or $L=\infty$ classic

Reason ????: $\lambda<0 \rightarrow$ rigidly antiparallel spins
Then Trivial? (0 repulsive, ∞ attractive ?)
BUT
If $L=\infty$ quantum chain: new phenomena

1) no impurity: \Rightarrow Pauli paramagnetism (1926) local (or specific) magnetic suscept. $<\infty$ at $T \geq 0$:

$$
\chi(\infty, 0)=\rho \frac{1}{k_{B} T_{F}} \frac{d}{2}, \quad(\text { Pauli })
$$

2) at fixed $\lambda<0 \Rightarrow$ Kondo effect:
susceptibility $\chi(\beta, h)$ (unlike XY: spin essential) smooth and >0 at $T=0$ and $h \geq 0$

Kondo realized the problem (3 3^{d}-order P.T.) and gave arguments (1964) for $\chi<\infty$ (actually conductivity $<\infty$) Anderson-Yuval-Hamann $(1969,70) \Rightarrow$ multiscale nature, relation with 1D Coulomb gas \& (no Kondo eff. $\lambda<0$), \&
\& stress lack of asymptotic freedom $=$ obstacle for $\lambda>0$. Later Andrei (1980) provided an exact solution of a closely related model.
Earlier Wilson (1974-1975) had overcome lack of asympt. freedom: simplified model and a recursion scheme, $\frac{1}{2}$-numerically.

Method builds sequence of approximate Hamiltonians more and more accurately representing the system on larger and larger scales, with Kondo effect via a nontrivial fixed point.

Evaluate $Z=\operatorname{Tr} e^{-\beta H_{K}}$ via Wick's rule.

$$
\begin{aligned}
& Z=\operatorname{Tr}\left\langle\sum_{n=0}^{\infty}(-1)^{n} \int_{0<t_{1}<\cdots<t_{n}<\beta} d t_{1} \cdots d t_{n} V\left(t_{1}\right) \cdots V\left(t_{n}\right)\right\rangle \\
& V(t) \stackrel{\text { def }}{=}-\lambda_{0} \psi^{+}(t) \sigma^{j} \psi_{\alpha_{2}}^{-}(t) \tau^{j}-h \boldsymbol{\omega}_{j} \tau^{j}
\end{aligned}
$$

Averages of observables depending only on the site 0 (e.g. impurity susceptibility) require by Wick \Rightarrow only Feynman graphs with propagators at $x=0: g\left(t-t^{\prime}\right)$:

$$
g\left(t-t^{\prime}\right)=\sum_{\omega= \pm} \int \frac{d k_{0} d k}{(2 \pi)^{2}} \frac{e^{i k_{0}\left(t-t^{\prime}\right)}}{-i k_{0}+\omega k} \chi\left(k_{0}^{2}+k^{2}\right),
$$

here a first simplification: cut-off of the large k, k_{0} and linear dispersion relation $\pm k$ at the Fermi level $k=0$). The multiscale decomposition of g

$$
g\left(t-t^{\prime}\right)=\sum_{m=0}^{-\infty} 2^{m} g_{0}\left(2^{m}\left(t-t^{\prime}\right)\right)
$$

exhibits the scaling properties of g : namely the long range $\sim \frac{1}{t-t^{\prime}}$ decomposed as a sum of short range propagators identical up to scaling.

The hierarchical model introduces a further simplification

$$
\begin{aligned}
& g\left(t-t^{\prime}\right)=\sum_{m=0}^{-\infty} 2^{m} g_{0}\left(2^{m}\left(t-t^{\prime}\right)\right) \\
& g_{0}\left(t, t^{\prime}\right)=0 \text { unless } t, t^{\prime} \in[k, k+1] \\
& g_{0}\left(t, t^{\prime}\right)= \begin{cases}1 & \text { if } t \in\left[k, k+\frac{1}{2}\right] \text { and } t^{\prime} \in\left[k+\frac{1}{2}, k\right] \\
-1 & \text { if } t^{\prime} \in\left[k, k+\frac{1}{2}\right] \text { and } t \in\left[k+\frac{1}{2}, k\right]\end{cases} \\
& g_{0}\left(t, t^{\prime}\right)=0 \\
& t^{\prime} \begin{array}{|c|c|}
\hline+1 & 0 \\
\hline 0 & -1 \\
t^{\prime}
\end{array}
\end{aligned}
$$

g_{0} looses translation invariance but the propagator g keeps the multiscale and long range properties of the initial model, at least hierarchically

But since the impurity is localized observ. localized at 0 depend on fields at $0, \psi^{ \pm}(0), \varphi^{ \pm} \Rightarrow 1 \mathrm{D}$ problem (AYH).

Illustration of (AYH970) remark: 1D problem, (long range) Main operators in the Lagrangian:

$$
O_{0}(t) \stackrel{\text { def }}{=} \psi^{+}(t) \boldsymbol{\sigma} \psi^{-}(t) \cdot \boldsymbol{\tau}=\vec{A}(t) \cdot \boldsymbol{\tau}, \quad O_{5}(t) \stackrel{\text { def }}{=} \boldsymbol{\tau} \cdot \boldsymbol{\omega}
$$

(in Grassmannian form) and
\mathcal{L}_{K} on scale m is (with $\alpha_{0}<0, \alpha_{5}=h \geq 0$ else 0).
$\int e^{\mathcal{L}_{K}^{[<=m]}\left(\psi^{[\leq m]}\right)} d \psi=\int e^{-\int_{0}^{\beta} \sum_{i} \alpha_{i}^{[m]} O_{i}(t) d t} d \psi^{[0]} d \psi^{[1]} \ldots d \psi^{[m+1]}$
Set RG analysis via (Grassmannian) for $\operatorname{Tr} e^{-\beta H_{K}}$
Key: IF $h=0$ then $\mathcal{L}_{K}^{[m]}(t)$ is $\forall m$:

$$
\alpha_{0}^{[m]} O_{0}(t) \cdot \boldsymbol{\tau}+\alpha_{1}^{[m]} O_{1}(t)
$$

i.e. no new operators needed at any scale (exact recursion)

The fermionic field $\psi^{ \pm}(x, t)$ is then represented as

$$
\psi^{ \pm}(x, t)=\sum_{m=0}^{-\infty} 2^{\frac{m}{2}} \psi^{[m], \pm}(x, t)
$$

Three relations used to compute the flow equation, which follow from a patient algebraic meditation:

$$
\begin{aligned}
& \left\langle A_{1}^{j_{1}} A_{2}^{j_{2}}\right\rangle=\delta_{j_{1}, j_{2}}\left(2+\frac{1}{3} \vec{a}^{2}\right)-2 a^{j_{1}, j_{2}} \delta_{j_{1} \neq j_{2}} s_{t_{2}, t_{1}} \\
& \left\langle A_{1}^{j_{1}} A_{1}^{j_{2}} A_{2}^{j_{3}}\right\rangle=\equiv 2 a^{j_{3}} \delta_{j_{1}, j_{2}} \\
& \left\langle A_{1}^{j_{1}} A_{1}^{j_{2}} A_{2}^{j_{3}} A_{2}^{j_{4}}\right\rangle=4 \delta_{j_{1}, j_{2}} \delta_{j_{3}, j_{4}}
\end{aligned}
$$

where the lower case \vec{a} denote $\left\langle\vec{A}_{1}\right\rangle \equiv\left\langle\vec{A}_{2}\right\rangle$ and $a^{j_{1}, j_{2}}=\left\langle\psi_{1}^{+} \sigma^{j_{1}} \sigma^{j_{2}} \psi_{1}^{-}\right\rangle=\left\langle\psi_{2}^{+} \sigma^{j_{1}} \sigma^{j_{2}} \psi_{2}^{-}\right\rangle$.

Remark the model calculations only involve fields localized at the impurity site, $x=0: \Rightarrow$ we deal with 1 -dimensional fermionic fields.

This does not mean that the lattice supporting the electrons plays no role: on the contrary it shows up, and in an essential way, because the "dimension" of the electron field will be different from that of the impurity, as evident from the factor $2^{\frac{m}{2}} \xrightarrow[m \rightarrow-\infty]{ } 0$.

$$
\begin{aligned}
& O_{0, \eta}^{[\leq 0]}(\Delta) \stackrel{\text { def }}{=} \frac{1}{2} \mathbf{A}_{\eta}^{[\leq 0]}(\Delta) \cdot \boldsymbol{\tau}, \quad O_{4, \eta}^{[\leq 0]}(\Delta) \stackrel{\text { def }}{=} \frac{1}{2} \mathbf{A}_{\eta}^{[\leq 0]}(\Delta) \cdot \boldsymbol{\omega}, \\
& O_{1, \eta}^{[\leq 0]}(\Delta) \stackrel{\text { def }}{=} \frac{1}{2} \mathbf{A}_{\eta}^{[\leq 0]}(\Delta)^{2}, \quad O_{6, \eta}^{[\leq 0]}(\Delta) \stackrel{\text { def }}{=} \frac{1}{2}\left(\mathbf{A}_{\eta}^{[\leq 0]}(\Delta) \cdot \boldsymbol{\omega}\right)(\boldsymbol{\tau} \cdot \boldsymbol{\omega}) \\
& O_{5, \eta}^{[\leq 0]}(\Delta) \stackrel{\text { def }}{=} \frac{1}{2} \boldsymbol{\tau} \cdot \boldsymbol{\omega}, \quad O_{7, \eta}^{[\leq 0]}(\Delta) \stackrel{\text { def }}{=} \frac{1}{2}\left(\mathbf{A}_{\eta}^{[\leq 0]}(\Delta)^{2}\right)(\boldsymbol{\tau} \cdot \boldsymbol{\omega})
\end{aligned}
$$

Scaling $O_{0}=$ marginal, O_{1} irrrelevant, $O_{5}=$ relevant
The RG consists in

1) Expand perturbatively $Z^{[>m]}=e^{V^{[m]}}$ via Feynman gr. heavily using the hierarchical structure
2) Decompose propagators as $\sum_{m=0}^{-\infty} 2^{m} g_{0}\left(2^{m}\left(t-t^{\prime}\right)\right.$

3) Recognize: at $h \neq 0$ no new operators can arise besides

$$
O_{4}=\vec{A} \cdot \vec{h}, O_{5}=\boldsymbol{\tau} \cdot \vec{h}, O_{6}=\vec{A} \cdot \vec{h} \boldsymbol{\tau} \cdot \vec{h}, O_{7}=\vec{A}^{2} \boldsymbol{\tau} \cdot \vec{h},
$$

3) Recognize that the result contains a few series that can collected to form a sequence of running couplings

$$
\boldsymbol{\alpha}^{[m]}=\left(\alpha_{0}^{[m]}, \alpha_{1}^{[m]}, \alpha_{4}^{[m]}, \alpha_{5}^{[m]}, \alpha_{6}^{[m]}, \alpha_{7}^{[m]}\right)
$$

with only $\alpha_{0}^{[m]}, \alpha_{1}^{[m]} \neq 0$ if $h=0$
4) Each is a convergent series in the initial couplings α_{0}, h, if small enough (BUT converg. radius m dependent)
5) Recognize that the $\boldsymbol{\alpha}^{[m]}$ satisfy a formal recursion

$$
\boldsymbol{\alpha}^{[m]}=\Lambda \boldsymbol{\alpha}^{[m+1]}+\mathcal{B}\left(\boldsymbol{\alpha}^{[m+1]}\right)
$$

and \mathcal{B} can be expressed as a "polynomial" with coefficients which are geometric series in $\boldsymbol{\alpha}^{[m+1]} ; \Lambda=\left(1, \frac{1}{2}, 1,2,1, \frac{1}{2}\right)$.

Even forgetting convergence, PT of no use: marginal term grows (if $\lambda_{0}<0$) and generates growing ("relevant" terms)!
6) Sum the geometric series to obtain a closed from of \mathcal{B}. After a natural change of variables $\boldsymbol{\alpha} \longleftrightarrow \boldsymbol{\lambda}$ at $h=0$

$$
\begin{aligned}
\lambda_{0}^{\prime} & =\frac{1}{C}\left(\lambda_{0}+3 \lambda_{0} \lambda_{1}-\lambda_{0}^{2}\right) \\
\lambda_{1}^{\prime} & =\frac{1}{C}\left(\frac{1}{2} \lambda_{1}+\frac{1}{8} \lambda_{0}^{2}\right) \\
C & =1+\frac{3}{2} \lambda_{0}^{2}+9 \lambda_{1}^{2}
\end{aligned}
$$

Non perturbative: for $m \rightarrow-\infty$ (IR limit, $\beta=+\infty, T=0$)
$\boldsymbol{\lambda}^{[m]}, \boldsymbol{\alpha}^{[m]}$ converge to non trivial fixed point
if $h=0, \alpha_{0}<0$, exactly computable, $\lambda_{0}^{*}=-7.807257 \ldots 10^{-1}, \lambda_{1}^{*}=5.292875 \ldots 10^{-2}$

$$
\lambda_{0}^{*}=-x \frac{1+5 x}{1-4 x}, \lambda_{1}^{*}=\frac{x}{3}, x=7.807257 \ldots 10^{-1}
$$

with $4-19 x-22 x^{2}-107 x^{3}=0$, real root.

Susceptibility: new operators needed to close beta

$$
O_{4}=\vec{A} \cdot \vec{h}, O_{5}=\boldsymbol{\tau} \cdot \vec{h}, O_{6}=\vec{A} \cdot \vec{h} \boldsymbol{\tau} \cdot \vec{h}, O_{7}=\vec{A}^{2} \boldsymbol{\tau} \cdot \vec{h},
$$

O_{0}, O_{4}, O_{6} marginal, O_{5} relevant, O_{1}, O_{7} irrelevant
Calculating beta function: via Feynman graphs, after simplifications, a beta function with 36 coeff is found
From the flow of the $\boldsymbol{\alpha}$ the partition function $Z(\beta, h)$ is computed and susceptibility

$$
\chi(\beta, h)=\partial_{h}^{2} \log Z(\beta, h)
$$

follows as a function of h.
The beta function is a rational function defined by the ratio of two polynomials of degree 2 .

$$
\begin{aligned}
& C=1+\lambda_{0}^{2}+\frac{1}{2}\left(\lambda_{0}+\lambda_{6}\right)^{2}+9 \lambda_{1}^{2}+\frac{1}{2} \lambda_{4}^{2}+\frac{1}{4} \lambda_{5}^{2}+9 \lambda_{7}^{2} \\
& \lambda_{0}^{\prime}=\frac{1}{C}\left(\lambda_{0}-\lambda_{0}^{2}+3 \lambda_{0} \lambda_{1}-\lambda_{0} \lambda_{6}\right) \\
& \lambda_{1}^{\prime}=\frac{1}{C}\left(\frac{1}{2} \lambda_{1}+\frac{1}{8} \lambda_{0}^{2}+\frac{1}{12} \lambda_{0} \lambda_{6}+\frac{1}{24} \lambda_{4}^{2}+\frac{1}{4} \lambda_{5} \lambda_{7}+\frac{1}{24} \lambda_{6}^{2}\right) \\
& \lambda_{4}^{\prime}=\frac{1}{C}\left(\lambda_{4}+\frac{1}{2} \lambda_{0} \lambda_{5}+3 \lambda_{0} \lambda_{7}+3 \lambda_{1} \lambda_{4}+\frac{1}{2} \lambda_{5} \lambda_{6}+3 \lambda_{6} \lambda_{7}\right) \\
& \lambda_{5}^{\prime}=\frac{1}{C}\left(2 \lambda_{5}+2 \lambda_{0} \lambda_{4}+36 \lambda_{1} \lambda_{7}+2 \lambda_{4} \lambda_{6}\right) \\
& \lambda_{6}^{\prime}=\frac{1}{C}\left(\lambda_{6}+\lambda_{0} \lambda_{6}+3 \lambda_{1} \lambda_{6}+\frac{1}{2} \lambda_{4} \lambda_{5}+3 \lambda_{4} \lambda_{7}\right) \\
& \lambda_{7}^{\prime}=\frac{1}{C}\left(\frac{1}{2} \lambda_{7}+\frac{1}{12} \lambda_{0} \lambda_{4}+\frac{1}{4} \lambda_{1} \lambda_{5}+\frac{1}{12} \lambda_{4} \lambda_{6}\right)
\end{aligned}
$$

Fig.2: plot of $\frac{\lambda_{i}}{\lambda_{i}^{*}}, i=0,1$, as a function of $N_{\beta}=\log _{2} \beta$, $\lambda_{0} \equiv \alpha_{0}=-0.1,-0.01$ respectively the left and the right pairs.

Fig.3: inflection point $n_{0}\left(\lambda_{0}\right): n_{0}\left(\lambda_{0}\right) \lambda_{0}$ vs. $\left|\log _{2}\right| \lambda_{0}| |$: only data with 10% error (upper and lower curves) visual lines interpolate data. The T_{K} for λ_{0} small tends to a constant.

$$
T_{K}=\text { const } e^{-c_{0} \lambda_{0}^{-1}}
$$

For $h \neq 0$ the flow leads to "high T fixed pt." at scale $n(h) h \underset{h \rightarrow 0}{ } c$, i.e. $T_{h}=e^{-c h^{-1}}$

The equation of state

Fig.4: plot of $\chi(\beta, h)$ for $h \in\left[0,10^{-6}\right]$ at $\lambda_{0}=-0.3$ and $\beta=2^{20}$ (so that the largest value for βh is ~ 1)
$[1,2,4,3,5]$
Hagen 27/6/2019

References
[1] G. Benfatto and G. Gallavotti.
Perturbation theory of the Fermi surface in a quantum liquid. a general quasi particle formalism and one dimensional systems.

Journal of Statistical Physics, 59:541-664, 1990.
[2] G. Benfatto and G. Gallavotti.
Renormalization group approach to the theory of the fermi surface.

Physical Review B, 42:9967-9972, 1990.
[3] G. Benfatto, G. Gallavotti, and I. Jauslin.
Kondo effect in a fermionic hierarchical model.
Journal of Statistical Physics, 161:1203-1230, 2015.
[4] T.C. Dorlas.

Renormalization group analysis of a simple hierarchical fermion model.
Communications in Mathematical Physics, 136:169-194, 1991.
[5] G. Gallavotti and I. Jauslin.
Kondo effect in the hierarchical $s-d$ model.
Journal of Statistical Physics, 161:1231-1235, 2015.

$$
\ell_{2}^{[m]}=\frac{1}{3}, \quad \ell_{3}^{[m]}=\frac{1}{6} \ell_{1}^{[m]}, \quad \ell_{8}^{[m]}=\frac{1}{6} \ell_{4}^{[m]}
$$

