Kondo problem: paradigm of RG application
G.Benfatto, [.Jauslin & GG

1-d lattice, fermions+impurity, “Kondo problem”

L/2—1

Hi= > 0@ (pA = Do (@) +h o

z=—L/2
Hyg =H, — M (0)07y~(0) 7/ = Hy+V
(1) vE(x) C&A operators, 07,77, j = 1,2, 3, Pauli matrices
(2) = € unit lattice, —L/2, L/2 identified (periodic b.c.)
(3) Af(x) = f(z+1)—2f(z) + f(z — 1) discrete Laplacian.

Alternative model 7 — d*7d~ with d* fermion (Wilson,
Andrei models).
A < O=antiferrom., A > 0 ferrom.
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No interaction (A = 0): 1 impurity and gh <1 (e.g. h =0)
X(B.h) < B 5300,  VL=>1 ph<l1

Interaction (classical) 1 elec.&1 impurity:
1) field on impurity & A # 0

X(B8,0) =0 repulsive, +oo attractive

2) Still true if L < oo classickquantum or L = oo classic
Reason ?7?777: A < 0 — rigidly antiparallel spins

Then Trivial? (0 repulsive, oo attractive 7)

BUT

If L = oo quantum chain: new phenomena
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1) no impurity: = Pauli paramagnetism (1926)
local (or specific) magnetic suscept. < oo at T'> 0 :

1 d

= p——= Pauli
Py (Pauld)

x(0,0)

2) at fixed A < 0 = Kondo effect:
susceptibility x (5, k) (unlike XY: spin essential)
smooth and >0 at T"=0and h >0
Kondo realized the problem (3%-order P.T.) and gave
arguments (1964) for x < oo (actually conductivity < co)

Anderson-Yuval-Hamann (1969,70) = multiscale nature,
relation with 1D Coulomb gas & (no Kondo eff. A <0), &
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& stress lack of asymptotic freedom = obstacle for A > 0.
Later Andrei (1980) provided an exact solution of a closely
related model.

Earlier Wilson (1974-1975) had overcome lack of asympt.
freedom: simplified model and a recursion scheme,
%—numerically.

Method builds sequence of approximate Hamiltonians more
and more accurately representing the system on larger and
larger scales, with Kondo effect via a nontrivial fixed point.

Evaluate Z = Tre ?Hx via Wick’s rule.

7 =Tr <i(—1)n/ dty---dt, V(t1) s V(tn)>

n—0 0<t1 < <tn<p
VIS — At (0o, (8) 7 — haw;Td
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Averages of observables depending only on the site 0 (e.g.
impurity susceptibility) require by Wick = only Feynman
graphs with propagators at x = 0: g(t — t'):

iko(t—t')
gt —t) E:/d%%je x (k2 + k%),
w==%

—Zk’o + wk

here a first simplification: cut-off of the large k, ky and
linear dispersion relation +k at the Fermi level k = 0).
The multiscale decomposition of g

gt —t) 2:2m (2™ (t —t'))

exhibitq the scaling properties of ¢g: namely the long range
— t, decomposed as a sum of short range propagators
identical up to scaling.
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The hierarchical model introduces a further simplification

gt =) ZT” (@t~ )
go(t,t) :0 unless t.t' e[k k+1]
1 iftelkk+iand ¢ € [k+ 3, K
—1 if ' € [k,k+ 3] and t € [k + §, K]
go(t,t") =0 otherwise
t/ t!

| 0 //o

0 -1 0

gO(t> t,) =

t t
go looses translation invariance but the propagator g keeps
the multiscale and long range properties of the initial
model, at least hierarchically
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But since the impurity is localized observ. localized at 0
depend on fields at 0, *(0), p* = 1D problem (AYH).

lustration of (AYH970) remark: 1D problem, (long range)
Main operators in the Lagrangian:

de _ e
Oyt) Eyt (o (t) - 7= At) -7, Os() 7w
(in Grassmannian form) and
L on scale m is (with ag < 0,5 = h > 0 else 0).

][e LT gy = t/j I o 0N dt quplO] quplt) - gyl
Set RG analysis via (Grassmannian) for Tre 7/

Key: IF h =0 then E[;(n (t) is Vm:

alM Oy (t) - T + ™0y (1)

i.e. no new operators needed at any scale (exact recursion)
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The fermionic field ¢*(x,t) is then represented as

V) = 3 25 g,
m=0

Three relations used to compute the flow equation, which
follow from a patient algebraic meditation:

o 1 o

(A7 A ) = 0y 4 (2 + 552> —2a"7205, 4j, Stoy
(A AP AP ) == 24" §;
(A AP AR AL ) = 45,

1,J2

1,J2 5j3,j4

where the lower case @ denote (A, ) = (A, ) and
e e Rt e )
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Remark the model calculations only involve fields localized
at the impurity site, x = 0: = we deal with 1-dimensional
fermionic fields.

This does not mean that the lattice supporting the
electrons plays no role: on the contrary it shows up, and in
an essential way, because the “dimension” of the electron
field will be different from that of the impurity, as evident
from the factor 2% ——0.

def 1 def 1

O (D)< S AEY(A) -7, ofnol(A)ZQAfo}(A) w,
def 1 def 1

O (A) = SAFIAY, O A) = SARIA) - w)(T - w)
def def].

05 (A)E Srw, OFM(A) % S(ARIAP)(r - w)
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Scaling Oy = marginal, Oy irrrelevant,Os; = relevant
The RG consists in

ylm]

1) Expand perturbatively Z Bml — ¢ via Feynman gr.

heavily using the hierarchical structure

2) Decompose propagators as y > 2™ go(2"(t —t')

3) Recognize: at h # 0 no new operators can arise besides
04:15-5, 05:7'-5 O = A-ht- h O; = /YQT-E,
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3) Recognize that the result contains a few series that can
collected to form a sequence of running couplings

a[m] = (agmly O‘[lm}v az[Lm]v a[5m]v Oégn]

with only o™, ol™ £ 0if h =0

[m])‘

,067

4) Each is a convergent series in the initial couplings ayp, /,
if small enough (BUT converg. radius m dependent)

5) Recognize that the o™ satisfy a formal recursion

a[m] _ Aa[m+1] + B<a[m+1])
and B can be expressed as a “polynomial” with coefficients
which are geometric series in o™, A = (1, %, 1,2,1, %)

Even forgetting convergence, PT of no use: marginal term
grows (if \p < 0) and generates growing (“relevant” terms)!
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6) Sum the geometric series to obtain a closed from of B.
After a natural change of variables a+— X at h = 0

1
Xy == (Ao + 3hA — A2)

C
11 1

C =1+ gAg +9A3
Non perturbative: for m — —oo (IR limit, 8 = 400, T' = 0)
A qlm] converge to non trivial fixed point
if h =0, a9 < 0, exactly computable,
Ny = —7.807257..1071, \j = 5.292875...1072

1+ 5z T
— N=—.z=T. 257..1071
1 M1 , ¢ ="7.807257...107 ",

A= —
0 T 3

with 4 — 192 — 2222 — 10722 = 0, real root.
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Susceptibility: new operators needed to close beta
Oy=A-h, Os=7-h, Og=A-ht h,0; = A%r-h,

0o, O4, Og marginal, Oy relevant, Oy, Oy irrelevant

Calculating beta function: via Feynman graphs, after
simplifications, a beta function with 36 coeff is found

From the flow of the a the partition function Z(3, h) is
computed and susceptibility

X(B,h) = 9 log Z(B, h)
follows as a function of h.

The beta function is a rational function defined by the ratio
of two polynomials of degree 2.
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1 1 1
C=1+A+ §(>\0 + X6)” + 9N} + 5&2; + ng +9X2

1
Ny =—=(Xo — A2+ 3)\0)\1 — XoX¢)

C
N = 1(1>\1+ A2+ /\0A6+ /\2+1/\5/\7+ —2)
C*2 8 12 24 4 24
™ _%()\4 - §A0A5 + 37 + 3 Ay + %)@6 + 36 \7)
A5 :%(2)\5 + 2X0As + 361 A7 + 204 )6)
g :%()% + Mg + 3>\1)\6 + %/\4)\5 + 3\ \7)
¥ =2 (30 + T dods + Thids + T Awk)
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Fig.2: plot of % i = 0,1, as a function of Ng = log, 3,

A =aqg = —0.1:—0.01 respectively the left and the right pairs.
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Fig.3: inflection point ng(Xg): no(Xo)Ao vs. |logy [Agl||: only data with 10% error (upper and

lower curves) visual lines interpolate data. The Tk for Ao small tends to a constant.

o —1
Ty = const e~

For h # 0 the flow leads to “high T fixed pt.” at scale
n(h)h—zc, i.e. Tp = e~eh

Hagen 27/6/2019 14/16



The equation of state
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Fig.4: plot of x(3,h) for h € [0,107%] at A\g = —0.3 and
B =22 (so that the largest value for Bh is ~ 1)
1, 2,4, 3, 5]
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