
Statistical ensembles out of equilibrium: turbulence

Equilibrium states ←→ different probability distributions,
e.g. canonical or microcanonical:
Reminder:

ρV particles in volume V ⇒ families Emc, E c, . . . of
distributions; elements “parameterized” by E, β,. . .

1) “observables of interest”: local observables O ∈ Oloc:
O(p,q), depend on qi ∈ q with qi ∈ Λ, Λ = volume ≪ V

2) distributions µV
β ∈ E c and µ̃V

E ∈ Emc are correspondent
if β, E are s.t.

µV
β (HV (p,q)) = E ⇒ lim

V→∞
µV
β (O) = lim

V→∞
µ̃V
E(O)

and µ’s are“equivalent in the thermodynamic limit”.
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Is it possible a similar description of the stationary states
of nonequilibrium systems?

Evolution eq. of u on “phase space’’ M (∞-dim.)
depending on a parameter R:

u̇ = fR(u) (formally)

“Difficult”:even existence-1-qness open.

In any theory of large (macroscopic) systems theories are
based on two key aspects

(1) Regularization of equations (via a ”cut off”)

(2) Restriction on observables (“local observables”)
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Regularization, necessary in essentially all cases, replaces
fR(~u) (∞-dim) by a regularized fV

R (~u) (finite dimensional).

Stationary distrib. µV
R(du) will be uniquely determined by

Ruelle’s extension of ergodic hypothesis (i.e. SRB distrib.).

Form a family EVR of distributions assigning average values
to the restricted observables.

(a) Stat. Mech: looks at local observables and cut-off V =
container size; ⇒ find their averages at limit as V →∞:

(b) Fluid Mech.: looks at large scale onservables (i.e.
functions of velocities with “waves” |k| < K ≪ N) and
cut-off N on the maximum wave |k|: ⇒ find averages at
limit as N →∞
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Once physical observables are restricted, it is expected (?)
that several equations could describe stationary states of
the same system.

E.g. hard core balls are described by Hamilton eq.s but
also by the isothermal equations, [1],

q̇ = p, ṗ = −∂qV (q)− α(p,q)p

where α(p,q) is a multiplier which imposes T (p) = const.

Stationary states of the two equations are parameterized by
energy E or kinetic energy kBT = β−1 and will be

µmc,V
E = δ(H(p,q)−E)dpdq or, respectively :

µc,V
β = e−β0V (q)δ(T (p)−Nβ−1)dpdq, β0 = β(1− 1

3N
)

Equivalent (on local onservables) if
µc,V
β (H) = E ⇒ limV→∞ µc,V

β (O) = limV→∞ µmc,V
E (O).
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Interesting cases arise when equations obey a fundamental
symmetry but may be phenomenologically described by non
symmetric equations (spontaneously broken symmetry).

Since a fundamental symmetry cannot be broken it is to be
expected that the same system can be described equally
well by symmetric eqs. (equivalent on special observables).

Consider, as a typical case, the Navier-Stokes equations.

In incompressible fluid can be regarded as Euler equations
subject to a thermostat adapting the pressure to the heat
due to the viscosity: it turns the equations into
time-reversal breaking ones.

Paradigmatic case is periodic NS fluid, [2, 3],
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(a) 2/3-Dim., incompressible,

(b) fixed large scale forcing F (e.g. with only one or
few waves and ‖F‖2 = 1),

(c) with thermostat. to dissipate heat via viscosity ν = 1

R

(consistently p = P (τ, T )).

NSirr: u̇α = −(~u · ∂)uα − ∂αp+
1
R
∆uα + Fα, ∂αuα = 0

Velocity: ~u(x) =
∑

~k 6=~0 uk
ik⊥

|k|
eik·x, uk = u−k (NS-2D)

NS2,irr: u̇k =
∑

k1+k2=k

(k⊥

1 ·k2)(k2
2−k2

1)

2|k1||k2||k|
uk1uk2 − νk2uk + fk

Iuα = −uα implies ISirr
t 6= Sirr

−t I, ⇒: irreversibility.

“Regularize eq.”: waves |kj | ≤ N . At UV -Cut-off , N .
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Given init. data u, evolution u→ Sirr
t u generates a steady

state (i.e. a SRB probability distr.) µirr,N
R on MN .

Unique out a volume 0 of u’s, for simplicity [AT R small:
“NS gauge symmetry” exists.; phase transitions, [4, 5, 6].

As R varies steady distr. µirr,N
R (du) are collected in E irr,N :

A statistical ensemble of stationary nonequilibrium
distrib. for NSirr.

Average energy ER, average dissipation EnR, Lyapunov
spectra (local and global) ... will be defined, e.g.:

ER =
∫
MN

µirr,N
R (du)||u||22, EnR =

∫
MN

µirr,N
R (du)||ku||22
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Consider new equation, NSrev (with cut-off N):

u̇k =
∑

k1+k2=k

(k⊥
1 · k2)(k

2
2 − k2

1)

2|k1||k2||k|
uk1

uk2
− α(u)k2uk + fk

with α s. t. D(u) = ||ku||22 = En (the enstrophy)is exact
const of motion on u→ Srev

t u.:

⇒ α(u) =

∑
k k

2F−kuk∑
k k

4|uk|2
e.g . D = 2

New eq. is reversible: ISrev
t u = Srev

−t Iu (as α is odd).

α is “a reversible viscosity”; (if D = 3 α is ∼different)
Rev. eq. can be empirical model of “thermostat” on the
fluid and should (?) have same effect of empirical
constant friction.
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NSrev generates a family of steady states Erev,N on MN :
µrev,N
En parameterized by constant value of enstrophy En.

α(u) in NSrev will wildly fluctuate at large R (i.e. small
viscosity ν) thus “self averaging” to a const. value ν
“homogenizing” the eq. into NSirr with viscosity ν.

Of course could impose multiplier [7, 8]

α′(u) =
∑

k fkuk∑
k |k|2|uk|2

: it would fix energy E =
∑

k |uk|2.

Equivalence mechanism by analogy with Stat. Mech.

(1) analog of “local observables”: functions O(u) which
depend only on uk with |k| < K. “Locality in momentum”

(2) analog of “Volume”: just the cut-off N confining the k

(3) analog of “state parameter”: viscosity ν = 1
R
(irrev.

case) or enstrophy En (rev. case) (or energy E ?).
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Equivalence condition : µrev,N
En (α) =

1

R
Equivalence is conjectured at N =∞ corresponding to
the Thermodynamic limit V →∞, for all R.

Averages of large scale observables will tend to the same
values as N →∞ for µirr,N

R ∈ E irr,N of NSirr and for

µrev,N
En ∈ Erev,N provided, D(u) def

=
∑

k k
2|uk|2 is s.t.

µirr,N
R (D) = En, or µrev,N

En (α) =
1

R
= ν

Balance: multiplying NS eq. by uk and sum on k:

1

2

d

dt

∑

k

|uk|2 = −γD(u) +W (u), γ = ν or α(u)

(transport terms = 0, D = 2, 3), D(u) = ∑
k k

2|uk|2 =
enstrophy and W =

∑
k fku−k = power of external force.
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Hence time averaging

1

R
µirr,N
R (D) = µirr,N

R (W ), µrev,N
En (α)En = µrev,N

En (W )

But W is local (as f is such) and, if the conjecture holds,
has equal average under the equivalence condition: hence
µirr,N
R (D) = En implies the relation

lim
N→∞

Rµrev,N
En (α) = 1

This becomes a first rather stringent test of the conjecture.

Since the equivalence rests on the rapid fluctuations of α(u)
a second idea is that if N is kept finite then, more
generally, if O is a large scale observable it should be:

µirr,N
R (O) = µrev,N

En (O)(1+o(1/R)) if µirr,N
R (D) = En

So a different idea arises.
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In dissipative equations of the form ẋ = f(x)− νx + g the
ν can be replaced by α(x) so that E = x2=const.
If for ν = 0, g = ~0 the motion is strongly chaotic then

ẋ = f(x)− νx + g,

ẋ = f(x)− α(x)x+ g, α(x) =
g · x
x2

Equivalence if ν → 0 between stationary µirr
ν and µrev

E if

µirr
ν (α) = E

What is special to NS to conj. that R→∞ is not needed?
It is its being a scaling limit of a microscopic equation
whose evolution is certainly chaotic and reversible.

NS differs from phenomenological and dissipative
equations not directly related to fundamental equations.

For the latter cases strong chaos is necessary if a friction
parameter is changed into a fluctuating quantity.
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But it will be useful to pause to illustrate a few prelimnary
simulations and checks.

Unfortunately the simulations are in dimension 2 (D = 3 is
at the moment beyond the available (to me) computational
tools) although present day available NS codes should be
perfectly capable to perform detailed checks in rapid time,
[8].
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FigA32-19-17-11.1-detail

Fig.0 (detail): Running average of reversible friction

Rα(u) ≡ R
2Re(f−k0

uk0
)k2

0∑
k k4|uk|2

, superposed to conjectured 1 and to

the fluctuating values of Rα(u). Initial transient t < 800.

Evol.: NSrev, R=2048, 224 modes, Lyap. ≃ 2, x-unit = 219
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Fig.1: As previous fig. but time 8 times longer: data reported

“every 10”, or black.
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Fig.2: NSirr: Running average of the work R
∑

k F−kuk|
(violet) in NSrev; and convergence to average enstrophy En

(orange straight line),
blue is running average of enstrophy

∑
k k

2|uk|2 in NSirr,

enstrophy fluctuations violet in NSirr: R=2048.
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unexpected ?, [7]:
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FigL16-19-17-11.01

Fig.3: Spectrum (local) Lyapunov V=48 modes reversible &

irreversible superposed; R=2048.

The difference can be made visible as:
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Fig.4: Relative Difference of (local) Lyap. exponents in Fig.
preced. R=2048, 48 modes.
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|)
; Level line marks 1%.
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Fig.5: More Lyapunov spectrum in 15× 15 modes (i.e. for
NS2D rever. & irrev. R = 2048, 240 modes on 213 steps.
Spectra evalued every 219 integr. steps. (and averaged over
200 samples).
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Fig.6: Relative difference of the (local) Lyapunov exp. of the

preceding fig. 240 modes. The line is the 4% level.
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The following Fig.7 (similar to Fig.1 but w. NSirr):
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Fig.7: As Fig.1 but running average of reversible friction Rα(u)

regarded as observ. in NSirr, superposed ro value 1 and to

fluctuating values of Rα(u). An extension ? of conjecture since

α(u) is not local.
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The figure suggests (from the theory of Anosov systems):
Check the “Fluctuation Relation” in the irreversible
evolution: for the divergence (trace of the Jacobian)
σ(u) = −∑

k ∂uk
(u̇k)rev: let p (time τ average of σ

〈 σ 〉
)

p
def
=

1

τ

∫ τ

0

σ(u(t))

〈σ 〉irr
dt,

then a theorem for Anosov systems:

Psrb(p)

Psrb(−p)
= eτ 1p 〈σ 〉irr (sense of large deviat. as τ →∞)

it is a “reversibility test on the irreversible flow”

Anosov systems play the role, in chaotic dynamics
that harmocic oscillators cover for ordered motions.
They are a paradigm of chaos. Are NS Anosov systems?
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The idea is based on Sinai (for Anosov syst.), Ruelle,
Bowen (for Axioms A syst.),[9, 10, 11] Chaotic hypothesis.

Can this be applied to turbulence ? However:

Problem 1: if attracting set A has lower dimension, time
reversal symmetry I cannot be applied because IA 6= A.
This certainly occurs if N becomes large enough, [12, 13].

Help could come if exists further symmetry P between A
and IA commuting with St: PSt = StP .

Then P ◦ I : A → A becomes a time reversal symmetry of
the motion restricted to A. And there are geometrical
conditions which in special cases guarantee existence of P
(“Axiom C” systems, [14]).
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Problem 2: even supposing existence of P , still is is not
possible to apply FR because, at best, it would concern the
contraction σA(u) of A and not the σ(u) of MV .

The σ(u) receives contributions from the exponential
approach to A: which obviously do not contribute to σA.

How to recognize such contributions ?

Help could come from “pairing rule”

Often Lyapunov exps (local and global) arise in pairs with
almost constant average or average on a regular curve.

In a few systems pairs have an exactly constant average.

An idea can be obtained from the local exponents
(eigenvalues of the symmetric part of the evolution
Jacobian matrix).

For instance NS seems to enjoy a pairing rule:
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Fig.8: R = 2048, 960modes, local exponents ordered
decreasing: s.t. λk, 0 ≤ k < d/2,
and increasing λd−k, 0 ≤ k < d/2,
the line 1

2
(λk + λd−1−k) and the line ≡ 0. Irreversible case

and apparent pairing rule
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.

R = 2048, 960 modes.
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The figures indicate:
(a) can check: revers. and irrrev. exps are very close: (but
this does not follow from the conject. as exps are not
local observables) → suggests: possible equivalence for a
larger class of observables.

(b) It has been proposed, [15, p.445],[7], that attracting
surface A dimension = twice the number of positive
exponents: hence in cases of pairing it is twice num. of
opposite sign pairs.

Implication: σA(u) is proportional to the total σ(u) if
pairing to a constant

σA(u) = ϕσ(u), ϕ =
number of opposite pairs

total number of pairs

and in the case of pairing to a more general curve
σA(u) = σ(u) +

∑
pairs<0(λj + λ′

j). Why?
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Idea: negative pairs correspond to the exponents associated
with the attraction to A: hence do not count for the
computation of σA.
The FR will hold, by the C.H., but with a slope ϕ < 1:

τpϕσ, rather than τpσ : in fig. ϕ ≃ 450

490

If true: this will be a “check of reversibility” in NSirr.
More elaborate checks are being attempted: [8, 16] +

(a) moments of large scale observables rev & irr

(b) local Lyap. exps of matrices different from Jacobian

(c) check of the fluctuation rel., particularly in irrev. cases,
(shown above to be accessible already with 960 modes and
R = 2048): ⇒ FR with slope ϕ < 1 (Axiom C ?), [15, 17].

(d) More values of R and N an example with R larger than
in the preceding cases yields similar results (not shown).
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Example of moments of local observables:
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Fig.10: Running averages rev of
(|Reu11|4 + |Imu11|4)/〈 |Reu11|4 + |Imu11|4 〉irr, R = 2048,
960 modes. Conjecture yields ratio tending to 1
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Fig.11: Same running averages rev of
(|Reu11|4 + |Imu11|4)/〈 |Reu11|4 + |Imu11|4 〉irr, for
R = 2048, and their rev. fluctuations, 960 modes.
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Concluding the simulation
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Fig.12: Illustration of the conjecture on a 3968 modes NS:
the running average of Rα in the reversible NS should tend
to 1, according to conjecture.
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Finally rigorous estimate of number N of Lyap. exp.
needed so that their sum remains > 0:

≤̃
√
2A(2π)2

√
R
√
REn,A = 0.55..

in dimension 2, while at dimension 3 a similar estimate
holds but it involves a norm different from the enstrophy.
(Ruelle if d = 3 and Lieb if d = 2, 3, [18, 13].

Applied here it would require N ∼ 2.104 for NS 2D: not
accessible in the simulations presented here but not
impossible in principle with available computers and
computation methods already available, at least if D = 2.

Finally further careful checks are required, particularly
since inspiring ideas are, to say the least, controversial as
shown by the following quote, selected among several, from
a well known treatise:

Nice, September 10 2019 31/31



CH is dismissed (by many) with arguments like (1999)

’More recently Gallavotti and Cohen have emphasized the
“nice” properties of Anosov systems. Rather than finding
realistic Anosov examples they have instead promoted their
“Chaotic Hypothesis”: if a system behaved “like” a [wildly
unphysical but well-understood] time reversible Anosov
system there would be simple and appealing consequences,
of exactly the kind mentioned above. Whether or not
speculations concerning such hypothetical Anosov systems
are an aid or a hindrance to understanding seems to be an
aesthetic question., [19].

Avoiding to comment on the statement I stress that
Statistical Mechanics, from Clausius, Boltzmann and
Maxwell has been a simple, surprising, consequence of the
“[wildly unphysical but well-understood]” periodicity
of the collective motions of 1019 gas molecules, [20].
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