Equilibrium states \longleftrightarrow different probability distributions, e.g. canonical or microcanonical:

Reminder:
ρV particles in volume $V \Rightarrow$ families $\mathcal{E}^{m c}, \mathcal{E}^{c}, \ldots$ of distributions; elements "parameterized" by E, β, \ldots

1) "observables of interest": local observables $O \in \mathcal{O}_{l o c}$: $O(\mathbf{p}, \mathbf{q})$, depend on $q_{i} \in \mathbf{q}$ with $q_{i} \in \Lambda, \Lambda=$ volume $\ll V$
2) distributions $\mu_{\beta}^{V} \in \mathcal{E}^{c}$ and $\widetilde{\mu}_{E}^{V} \in \mathcal{E}^{m c}$ are correspondent if β, E are s.t.

$$
\mu_{\beta}^{V}\left(H_{V}(\mathbf{p}, \mathbf{q})\right)=E \Rightarrow \lim _{V \rightarrow \infty} \mu_{\beta}^{V}(O)=\lim _{V \rightarrow \infty} \widetilde{\mu}_{E}^{V}(O)
$$

and μ 's are "equivalent in the thermodynamic limit".

Is it possible a similar description of the stationary states of nonequilibrium systems?

Evolution eq. of \mathbf{u} on "phase space" \mathbf{M} (∞-dim.) depending on a parameter R :

$$
\dot{\mathbf{u}}=\mathrm{f}_{\mathbf{R}}(\mathbf{u}) \quad \text { (formally) }
$$

"Difficult": even existence-1-qness open.
In any theory of large (macroscopic) systems theories are based on two key aspects
(1) Regularization of equations (via a "cut off")
(2) Restriction on observables ("local observables")

Regularization, necessary in essentially all cases, replaces $f_{R}(\vec{u})(\infty-\operatorname{dim})$ by a regularized $f_{R}^{V}(\vec{u})$ (finite dimensional). Stationary distrib. $\mu_{R}^{V}(d u)$ will be uniquely determined by Ruelle's extension of ergodic hypothesis (i.e. SRB distrib.).
Form a family \mathcal{E}_{R}^{V} of distributions assigning average values to the restricted observables.
(a) Stat. Mech: looks at local observables and cut-off $V=$ container size; \Rightarrow find their averages at limit as $V \rightarrow \infty$:
(b) Fluid Mech.: looks at large scale onservables (i.e. functions of velocities with "waves" $|\mathbf{k}|<K \ll N$) and cut-off N on the maximum wave $|\mathbf{k}|: \Rightarrow$ find averages at limit as $N \rightarrow \infty$

Once physical observables are restricted, it is expected (?) that several equations could describe stationary states of the same system.
E.g. hard core balls are described by Hamilton eq.s but also by the isothermal equations, [1],

$$
\dot{\mathbf{q}}=\mathbf{p}, \quad \dot{\mathbf{p}}=-\boldsymbol{\partial}_{\mathbf{q}} V(\mathbf{q})-\alpha(\mathbf{p}, \mathbf{q}) \mathbf{p}
$$

where $\alpha(\mathbf{p}, \mathbf{q})$ is a multiplier which imposes $T(\mathbf{p})=$ const.
Stationary states of the two equations are parameterized by energy E or kinetic energy $k_{B} T=\beta^{-1}$ and will be

$$
\begin{aligned}
& \mu_{E}^{m c, V}=\delta(H(\mathbf{p}, \mathbf{q})-E) d \mathbf{p} d \mathbf{q} \quad \text { or, respectively: } \\
& \mu_{\beta}^{c, V}=e^{-\beta_{0} V(\mathbf{q})} \delta\left(T(\mathbf{p})-N \beta^{-1}\right) d \mathbf{p} d \mathbf{q}, \quad \beta_{0}=\beta\left(1-\frac{1}{3 N}\right)
\end{aligned}
$$

Equivalent (on local onservables) if $\mu_{\beta}^{c, V}(H)=E \Rightarrow \lim _{V \rightarrow \infty} \mu_{\beta}^{c, V}(O)=\lim _{V \rightarrow \infty} \mu_{E}^{m c, V}(O)$.

Interesting cases arise when equations obey a fundamental symmetry but may be phenomenologically described by non symmetric equations (spontaneously broken symmetry).

Since a fundamental symmetry cannot be broken it is to be expected that the same system can be described equally well by symmetric eqs. (equivalent on special observables).
Consider, as a typical case, the Navier-Stokes equations.
In incompressible fluid can be regarded as Euler equations subject to a thermostat adapting the pressure to the heat due to the viscosity: it turns the equations into time-reversal breaking ones.
Paradigmatic case is periodic NS fluid, [2, 3],
(a) 2/3-Dim., incompressible,
(b) fixed large scale forcing F (e.g. with only one or few waves and $\|F\|_{2}=1$),
(c) with thermostat. to dissipate heat via viscosity $\boldsymbol{\nu}=\frac{1}{\mathrm{R}}$ (consistently $p=P(\tau, T)$).
$N S_{i r r}: \dot{u}_{\alpha}=-(\vec{u} \cdot \boldsymbol{\partial}) u_{\alpha}-\partial_{\alpha} p+\frac{1}{R} \Delta u_{\alpha}+F_{\alpha}, \quad \partial_{\alpha} u_{\alpha}=0$
Velocity: $\vec{u}(x)=\sum_{\vec{k} \neq 0} u_{\mathbf{k}} \frac{i \mathbf{k}^{\perp}}{|\mathbf{k}|} e^{i \mathbf{k} \cdot \mathbf{x}}, \quad \bar{u}_{\mathbf{k}}=u_{-\mathbf{k}} \quad(\mathrm{NS}-2 \mathrm{D})$
$N S_{2, \text { irr }}: \dot{u}_{\mathbf{k}}=\sum_{\mathbf{k}_{1}+\mathbf{k}_{2}=\mathbf{k}} \frac{\left(\mathbf{k}_{1}^{\perp} \cdot \mathbf{k}_{2}\right)\left(\mathbf{k}_{\mathbf{2}}^{2}-\mathbf{k}_{\mathbf{1}}^{2}\right)}{2\left|\mathbf{k}_{1}\right|\left|\mathbf{k}_{2}\right| \mathbf{k} \mid} u_{\mathbf{k}_{1}} u_{\mathbf{k}_{2}}-\nu \mathbf{k}^{2} u_{\mathbf{k}}+f_{\mathbf{k}}$
$I u_{\alpha}=-u_{\alpha}$ implies $I S_{t}^{\text {irr }} \neq S_{-t}^{\text {irr }} I, \Rightarrow$ irreversibility.
"Regularize eq.": waves $\left|\mathbf{k}_{j}\right| \leq N$. At $U V$-Cut-off , N.

Given init. data u, evolution $u \rightarrow S_{t}^{i r r} u$ generates a steady state (i.e. a SRB probability distr.) $\mu_{R}^{i r r, N}$ on M_{N}.

Unique out a volume 0 of u 's, for simplicity [AT R small: "NS gauge symmetry" exists.; phase transitions, $[4,5,6]$.

As R varies steady distr. $\mu_{R}^{i r r, N}(d u)$ are collected in $\mathcal{E}^{i r r, N}$:
A statistical ensemble of stationary nonequilibrium distrib. for $N S_{i r r}$.

Average energy E_{R}, average dissipation $E n_{R}$, Lyapunov spectra (local and global) ... will be defined, e.g.:
$E_{R}=\int_{M_{N}} \mu_{R}^{i r r, N}(d u)\|u\|_{2}^{2}, \quad E n_{R}=\int_{M_{N}} \mu_{R}^{i r r, N}(d u)\|\mathbf{k} u\|_{2}^{2}$

Consider new equation, $N S_{\text {rev }}$ (with cut-off N):

$$
\dot{\mathbf{u}}_{\mathbf{k}}=\sum_{\mathbf{k}_{1}+\mathbf{k}_{2}=\mathbf{k}} \frac{\left(\mathbf{k}_{1}^{\perp} \cdot \mathbf{k}_{2}\right)\left(\mathbf{k}_{2}^{2}-\mathbf{k}_{1}^{2}\right)}{2\left|\mathbf{k}_{1}\right|\left|\mathbf{k}_{\mathbf{2}}\right||\mathbf{k}|} \mathbf{u}_{\mathbf{k}_{1}} \mathbf{u}_{\mathbf{k}_{2}}-\alpha(\mathbf{u}) \mathbf{k}^{2} \mathbf{u}_{\mathbf{k}}+f_{\mathbf{k}}
$$

with α s. t. $\mathcal{D}(u)=\|\mathbf{k} u\|_{2}^{2}=E n$ (the enstrophy) is exact const of motion on $u \rightarrow S_{t}^{\text {rev } u}$.:

$$
\Rightarrow \alpha(u)=\frac{\sum_{\mathbf{k}} \mathbf{k}^{2} F_{-\mathbf{k}} u_{\mathbf{k}}}{\sum_{\mathbf{k}} \mathbf{k}^{4}\left|u_{\mathbf{k}}\right|^{2}} \quad \text { e.g. } D=2
$$

New eq. is reversible: $I S_{t}^{r e v} u=S_{-t}^{r e v} I u$ (as α is odd). α is "a reversible viscosity"; (if $D=3 \alpha$ is \sim different)

Rev. eq. can be empirical model of "thermostat" on the fluid and should (?) have same effect of empirical constant friction.
$N S_{r e v}$ generates a family of steady states $\mathcal{E}^{r e v, N}$ on M_{N} : $\mu_{E n}^{r e v, N}$ parameterized by constant value of enstrophy En.
$\alpha(u)$ in $N S_{\text {rev }}$ will wildly fluctuate at large R (i.e. small viscosity ν) thus "self averaging" to a const. value ν "homogenizing" the eq. into $N S_{i r r}$ with viscosity ν.

Of course could impose multiplier [7, 8] $\alpha^{\prime}(u)=\frac{\sum_{\mathbf{k}} f_{\mathbf{k}} \bar{u}_{\mathbf{k}}}{\sum_{\mathbf{k}}|\mathbf{k}|^{2}\left|u_{\mathbf{k}}\right|^{2}}$: it would fix energy $E=\sum_{\mathbf{k}}\left|u_{\mathbf{k}}\right|^{2}$.

Equivalence mechanism by analogy with Stat. Mech.
(1) analog of "local observables": functions $O(u)$ which depend only on $u_{\mathbf{k}}$ with $|\mathbf{k}|<K$. "Locality in momentum"
(2) analog of "Volume": just the cut-off N confining the \mathbf{k}
(3) analog of "state parameter": viscosity $\nu=\frac{1}{R}$ (irrev. case) or enstrophy $E n$ (rev. case) (or energy E ?).

Equivalence condition : $\mu_{E n}^{r e v, N}(\alpha)=\frac{1}{R}$
Equivalence is conjectured at $N=\infty$ corresponding to the Thermodynamic limit $V \rightarrow \infty$, for all R.
Averages of large scale observables will tend to the same values as $N \rightarrow \infty$ for $\mu_{R}^{i r r, N} \in \mathcal{E}^{i r r, N}$ of $N S_{i r r}$ and for $\mu_{E n}^{r e v, N} \in \mathcal{E}^{r e v, N}$ provided, $\mathcal{D}(\mathbf{u}) \stackrel{\text { def }}{=} \sum_{\mathbf{k}} \mathbf{k}^{2}\left|\mathbf{u}_{\mathbf{k}}\right|^{2}$ is s.t.

$$
\mu_{R}^{i r r, N}(\mathcal{D})=E n, \quad \text { or } \quad \mu_{E n}^{r e v, N}(\alpha)=\frac{1}{R}=\nu
$$

Balance: multiplying NS eq. by $\bar{u}_{\mathbf{k}}$ and sum on \mathbf{k} :

$$
\frac{1}{2} \frac{d}{d t} \sum_{\mathbf{k}}\left|u_{\mathbf{k}}\right|^{2}=-\gamma \mathcal{D}(\mathbf{u})+W(\mathbf{u}), \quad \gamma=\nu \text { or } \alpha(\mathbf{u})
$$

(transport terms $=0, D=2,3$), $\mathcal{D}(\mathbf{u})=\sum_{\mathbf{k}} \mathbf{k}^{2}\left|\mathbf{u}_{\mathbf{k}}\right|^{2}=$ enstrophy and $W=\sum_{\mathbf{k}} \mathbf{f}_{\mathbf{k}} \mathbf{u}_{-\mathbf{k}}=$ power of external force.

Hence time averaging

$$
\frac{1}{R} \mu_{R}^{i r r, N}(\mathcal{D})=\mu_{R}^{i r r, N}(W), \quad \mu_{E n}^{r e v, N}(\alpha) E n=\mu_{E n}^{r e v, N}(W)
$$

But W is local (as \mathbf{f} is such) and, if the conjecture holds, has equal average under the equivalence condition: hence $\mu_{R}^{i r r, N}(\mathcal{D})=$ En implies the relation

$$
\lim _{N \rightarrow \infty} R \mu_{E n}^{r e v, N}(\alpha)=1
$$

This becomes a first rather stringent test of the conjecture.
Since the equivalence rests on the rapid fluctuations of $\alpha(u)$ a second idea is that if N is kept finite then, more generally, if O is a large scale observable it should be:
$\mu_{R}^{i r r, N}(O)=\mu_{E n}^{r e v, N}(O)(1+o(1 / R)) \quad$ if $\quad \mu_{R}^{i r r, N}(\mathcal{D})=E n$
So a different idea arises.

In dissipative equations of the form $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})-\nu \mathbf{x}+\mathbf{g}$ the ν can be replaced by $\alpha(\mathbf{x})$ so that $E=\mathbf{x}^{2}=$ const.
If for $\nu=0, \mathbf{g}=\overrightarrow{0}$ the motion is strongly chaotic then

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})-\nu \mathbf{x}+\mathbf{g}, \\
& \dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})-\alpha(\mathbf{x}) \mathbf{x}+\mathbf{g}, \quad \alpha(\mathbf{x})=\frac{\mathbf{g} \cdot \mathbf{x}}{\mathbf{x}^{2}}
\end{aligned}
$$

Equivalence if $\nu \rightarrow 0$ between stationary $\mu_{\nu}^{i r r}$ and $\mu_{E}^{r e v}$ if

$$
\mu_{\nu}^{i r r}(\alpha)=E
$$

What is special to NS to conj. that $R \rightarrow \infty$ is not needed? It is its being a scaling limit of a microscopic equation whose evolution is certainly chaotic and reversible.

NS differs from phenomenological and dissipative equations not directly related to fundamental equations.

For the latter cases strong chaos is necessary if a friction parameter is changed into a fluctuating quantity.

But it will be useful to pause to illustrate a few prelimnary simulations and checks.

Unfortunately the simulations are in dimension $2(D=3$ is at the moment beyond the available (to me) computational tools) although present day available NS codes should be perfectly capable to perform detailed checks in rapid time, [8].

FigA32-19-17-11.1-detail

Fig. 0 (detail): Running average of reversible friction $R \alpha(u) \equiv R \frac{2 R e\left(f_{-\mathbf{k}_{0}} u_{\mathbf{k}_{\mathbf{k}}}\right) \mathbf{k}_{0}^{2}}{\sum_{\mathbf{k}} \mathbf{k}^{4}\left|u_{\mathbf{k}}\right|^{2}}$, superposed to conjectured 1 and to the fluctuating values of $R \alpha(u)$. Initial transient $t<800$.
Evol.: $N S_{\text {rev }}, \mathbf{R}=\mathbf{2 0 4 8}$, 224 modes, Lyap. $\simeq 2$, x-unit $=2^{19}$

FigA32-19-17-11.1-all

Fig.1: As previous fig. but time 8 times longer: data reported "every 10 ", or black.

FigEN32-19-17-11.1

Fig.2: $N S_{i r r}$: Running average of the work $R \sum_{\mathbf{k}} F_{-\mathbf{k}} u_{\mathbf{k}}$ (violet) in $N S_{\text {rev }}$; and convergence to average enstrophy En (orange straight line),
blue is running average of enstrophy $\sum_{\mathbf{k}} \mathbf{k}^{2}\left|u_{\mathbf{k}}\right|^{2}$ in $N S_{i r r}$, enstrophy fluctuations violet in $N S_{i r r}: \mathbf{R}=\mathbf{2 0 4 8}$.
unexpected ?, [7]:

FigL16-19-17-11.01

Fig.3: Spectrum (local) Lyapunov V=48 modes reversible \& irreversible superposed; $\mathbf{R}=2048$.

The difference can be made visible as:

FigDiff16-191711-01

Fig.4: Relative Difference of (local) Lyap. exponents in Fig. preced. $\mathrm{R}=2048$, 48 modes.
Graph of $\frac{\left|\lambda_{k}^{\text {rev }}-\lambda_{k}^{i r r}\right|}{\max \left(\left|\lambda_{k}^{\text {rev }}\right|, \lambda_{k}^{i r r} \mid\right)}$; Level line marks 1%.

Fig.5: More Lyapunov spectrum in 15×15 modes (i.e. for NS2D rever. \& irrev. $R=2048$, 240 modes on 2^{13} steps. Spectra evalued every 2^{19} integr. steps. (and averaged over 200 samples).

FigDiff32-19-17-11.01

Fig.6: Relative difference of the (local) Lyapunov exp. of the preceding fig. 240 modes. The line is the 4% level.

The following Fig. 7 (similar to Fig. 1 but w. $N S_{i r r}$):

FigA32-19-17-11.0-all

Fig.7: As Fig. 1 but running average of reversible friction $R \alpha(\mathbf{u})$ regarded as observ. in $N S_{i r r}$, superposed ro value 1 and to fluctuating values of $R \alpha(\mathbf{u})$. An extension ? of conjecture since $\alpha(\mathbf{u})$ is not local.

The figure suggests (from the theory of Anosov systems): Check the "Fluctuation Relation" in the irreversible evolution: for the divergence (trace of the Jacobian) $\boldsymbol{\sigma}(u)=-\sum_{\mathbf{k}} \partial_{u_{\mathbf{k}}}\left(\dot{u}_{\mathbf{k}}\right)_{\text {rev }}$: let p (time τ average of $\frac{\sigma}{\langle\sigma\rangle}$)

$$
p \stackrel{\text { def }}{=} \frac{1}{\tau} \int_{0}^{\tau} \frac{\boldsymbol{\sigma}(\mathbf{u}(t))}{\langle\boldsymbol{\sigma}\rangle_{i r r}} d t
$$

then a theorem for Anosov systems:

$$
\frac{P_{s r b}(p)}{P_{s r b}(-p)}=e^{\tau 1 \mathbf{p}\langle\boldsymbol{\sigma}\rangle_{\mathrm{irr}}} \text { (sense of large deviat. as } \tau \rightarrow \infty \text {) }
$$

it is a "reversibility test on the irreversible flow"
Anosov systems play the role, in chaotic dynamics that harmocic oscillators cover for ordered motions. They are a paradigm of chaos. Are NS Anosov systems?

The idea is based on Sinai (for Anosov syst.), Ruelle, Bowen (for Axioms A syst.), $[9,10,11]$ Chaotic hypothesis. Can this be applied to turbulence? However:

Problem 1: if attracting set \mathcal{A} has lower dimension, time reversal symmetry I cannot be applied because $I \mathcal{A} \neq \mathcal{A}$. This certainly occurs if N becomes large enough, [12, 13]. Help could come if exists further symmetry P between \mathcal{A} and $I \mathcal{A}$ commuting with $S_{t}: P S_{t}=S_{t} P$.

Then $P \circ I: \mathcal{A} \rightarrow \mathcal{A}$ becomes a time reversal symmetry of the motion restricted to \mathcal{A}. And there are geometrical conditions which in special cases guarantee existence of P ("Axiom C" systems, [14]).

Problem 2: even supposing existence of P, still is is not possible to apply FR because, at best, it would concern the contraction $\sigma_{\mathcal{A}}(\mathbf{u})$ of \mathcal{A} and not the $\sigma(\mathbf{u})$ of M_{V}.

The $\sigma(\mathbf{u})$ receives contributions from the exponential approach to \mathcal{A} : which obviously do not contribute to $\sigma_{\mathcal{A}}$.

How to recognize such contributions?
Help could come from "pairing rule"
Often Lyapunov exps (local and global) arise in pairs with almost constant average or average on a regular curve.

In a few systems pairs have an exactly constant average.
An idea can be obtained from the local exponents (eigenvalues of the symmetric part of the evolution Jacobian matrix).

For instance NS seems to enjoy a pairing rule:

Fig.8: $R=2048$, 960modes, local exponents ordered decreasing: s.t. $\lambda_{k}, 0 \leq k<d / 2$, and increasing $\lambda_{d-k}, 0 \leq k<d / 2$, the line $\frac{1}{2}\left(\lambda_{k}+\lambda_{d-1-k}\right)$ and the line $\equiv 0$. Irreversible case and apparent pairing rule

FIGll-detail64-19-17-11

Fig.9: Detail of Fig. 8 showing the $N S_{i r r}$ exponents and the line $\equiv 0$: it illustrates the" dimensional loss" $\sim \frac{450}{490}$. $R=2048$, 960 modes.

The figures indicate:
(a) can check: revers. and irrrev. exps are very close: (but this does not follow from the conject. as exps are not local observables) \rightarrow suggests: possible equivalence for a larger class of observables.
(b) It has been proposed, [15, p.445],[7], that attracting surface \mathcal{A} dimension $=$ twice the number of positive exponents: hence in cases of pairing it is twice num. of opposite sign pairs.
Implication: $\sigma_{\mathcal{A}}(\mathbf{u})$ is proportional to the total $\sigma(\mathbf{u})$ if pairing to a constant

$$
\sigma_{\mathcal{A}}(\mathbf{u})=\boldsymbol{\varphi} \sigma(\mathbf{u}), \quad \boldsymbol{\varphi}=\frac{\text { number of opposite pairs }}{\text { total number of pairs }}
$$

and in the case of pairing to a more general curve $\sigma_{\mathcal{A}}(u)=\sigma(u)+\sum_{\text {pairs }<0}\left(\lambda_{j}+\lambda_{j}^{\prime}\right)$. Why?

Idea: negative pairs correspond to the exponents associated with the attraction to \mathcal{A} : hence do not count for the computation of $\sigma_{\mathcal{A}}$.
The FR will hold, by the C.H., but with a slope $\varphi<1$:
$\tau p \varphi \sigma, \quad$ rather than $\tau p \sigma: \quad$ in fig. $\varphi \simeq \frac{450}{490}$
If true: this will be a "check of reversibility" in $N S_{i r r}$. More elaborate checks are being attempted: $[8,16]+$ (a) moments of large scale observables rev \& irr (b) local Lyap. exps of matrices different from Jacobian (c) check of the fluctuation rel., particularly in irrev. cases, (shown above to be accessible already with 960 modes and $R=2048): \Rightarrow$ FR with slope $\varphi<1$ (Axiom C ?), [15, 17].
(d) More values of R and N an example with R larger than in the preceding cases yields similar results (not shown).

Example of moments of local observables:

Fig.10: Running averages rev of
$\left.\left(\left|R e u_{11}\right|^{4}+\left|I m u_{11}\right|^{4}\right) /\left.\langle | R e u_{11}\right|^{4}+\left|\operatorname{Im} u_{11}\right|^{4}\right\rangle_{i r r}, R=2048$, 960 modes. Conjecture yields ratio tending to 1

Fig.11: Same running averages rev of
$\left.\left(\left|\operatorname{Re} u_{11}\right|^{4}+\left|\operatorname{Im} u_{11}\right|^{4}\right) /\left.\langle | \operatorname{Re} u_{11}\right|^{4}+\left|\operatorname{Im} u_{11}\right|^{4}\right\rangle_{i r r}$, for $R=2048$, and their rev. fluctuations, 960 modes.

Concluding the simulation

Fig.12: Illustration of the conjecture on a 3968 modes NS: the running average of $R \alpha$ in the reversible NS should tend to 1 , according to conjecture.

Finally rigorous estimate of number \mathcal{N} of Lyap. exp. needed so that their sum remains >0 :

$$
\leq \sqrt{2} A(2 \pi)^{2} \sqrt{R} \sqrt{R E n}, A=0.55 . .
$$

in dimension 2, while at dimension 3 a similar estimate holds but it involves a norm different from the enstrophy. (Ruelle if $d=3$ and Lieb if $d=2,3,[18,13]$.
Applied here it would require $\mathcal{N} \sim 2.10^{4}$ for NS 2D: not accessible in the simulations presented here but not impossible in principle with available computers and computation methods already available, at least if $D=2$.

Finally further careful checks are required, particularly since inspiring ideas are, to say the least, controversial as shown by the following quote, selected among several, from a well known treatise:

CH is dismissed (by many) with arguments like (1999)
'More recently Gallavotti and Cohen have emphasized the "nice" properties of Anosov systems. Rather than finding realistic Anosov examples they have instead promoted their "Chaotic Hypothesis": if a system behaved "like" a [wildly unphysical but well-understood] time reversible Anosov system there would be simple and appealing consequences, of exactly the kind mentioned above. Whether or not speculations concerning such hypothetical Anosov systems are an aid or a hindrance to understanding seems to be an aesthetic question., [19].
Avoiding to comment on the statement I stress that Statistical Mechanics, from Clausius, Boltzmann and Maxwell has been a simple, surprising, consequence of the "[wildly unphysical but well-understood]" periodicity of the collective motions of 10^{19} gas molecules, [20].

Quoted references
[1] D. J. Evans and G. P. Morriss.
Statistical Mechanics of Nonequilibrium Fluids.
Academic Press, New-York, 1990.
[2] G. Gallavotti.
Reversible viscosity and Navier-Stokes fluids, harmonic oscillators.
Springer Proceedings in Mathematics 8f Statistics, 282:569-580, 2019.
[3] G. Gallavotti.
Nonequilibrium and Fluctuation Relation.
Journal of Statistical Physics.
[4] C. Boldrighini and V. Franceschini.
A five-dimensional truncation of the plane incompressible navier-stokes equations.
Communications in Mathematical Physics, 64:159-170, 1978.
[5] D. Baive and V. Franceschini.
Symmetry breaking on a model of five-mode truncated navier-stokes equations. Journal of Statistical Physics, 26:471-484, 1980.
[6] C. Marchioro.
An example of absence of turbulence for any Reynolds number.
Communications in Mathematical Physics, 105:99-106, 1986.
[7] G. Gallavotti.
Dynamical ensembles equivalence in fluid mechanics.
Physica D, 105:163-184, 1997.
[8] V. Shukla, B. Dubrulle, S. Nazarenko, G. Krstulovic, and S. Thalabard.
Phase transition in time-reversible navier-stokes equations.
arxiv, 1811:11503, 2018.
[9] Ya. G. Sinai.
Markov partitions and C-diffeomorphisms.
Functional Analysis and its Applications, 2(1):64-89, 1968.
[10] R. Bowen and D. Ruelle.
The ergodic theory of axiom A flows.
Inventiones Mathematicae, 29:181-205, 1975.
[11] D. Ruelle.
Measures describing a turbulent flow.
Annals of the New York Academy of Sciences, 357:1-9, 1980.
[12] D. Ruelle.
Large volume limit of the distribution of characteristic exponents in turbulence.
Communications in Mathematical Physics, 87:287-302, 1982.
[13] E. Lieb.
On characteristic exponents in turbulence.
Communications in Mathematical Physics, 92:473-480, 1984.
[14] G. Gallavotti.
Nonequilibrium and irreversibility.
Theoretical and Mathematical Physics. Springer-Verlag and http://ipparco.roma1.infn.it
\& arXiv 1311.6448, Heidelberg, 2014.
[15] F. Bonetto, G. Gallavotti, and P. Garrido.
Chaotic principle: an experimental test.
Physica D, 105:226-252, 1997.
[16] L. Biferale, M. Cencini, M. DePietro, G. Gallavotti, and V. Lucarini.
Equivalence of non-equilibrium ensembles in turbulence models.
Physical Review E, 98:012201, 2018.
[17] F. Bonetto and G. Gallavotti.
Reversibility, coarse graining and the chaoticity principle.
Communications in Mathematical Physics, 189:263-276, 1997.
[18] D. Ruelle.
Characteristic exponents for a viscous fluid subjected to time dependent forces.
Communications in Mathematical Physics, 93:285-300, 1984.
[19] W. Hoover and C. Griswold.

Time reversibility Computer simulation, and Chaos.
Advances in Non Linear Dynamics, vol. 13, 2d edition. World Scientific, Singapore, 1999.
[20] G. Gallavotti.
Ergodicity: a historical perspective. equilibrium and nonequilibrium.
European Physics Journal H, 41,:181-259, 2016.
Also: http://arxiv.org \& http://ipparco.roma1.infn.it
Nice, September 102019

