
Statistical ensembles for Navier-Stokes equation

Statistical properties of an Equilibrium state are obtained
by several different probability distributions, e.g. canonical
or microcanonical: which attribute the same average to
physically interesting obervables. Reminder:

The probability distr. describing a system with ρV particles
in volume V can be collected in families Emc, E c, . . . whose
elements are parameterized by parameter E or, resp., β.

1) observables of interest are local observables O ∈ Oloc:
O(p,q) depending on p,q only through coordinates of
particles qi ∈ q with qi ∈ Λ where Λ is a volume ≪ V

2) the probability distribution µV
β ∈ E

c and µ̃V
E ∈ E

mc are
correspondent if β, E are s.t.

µV
β (HV (p,q)) = E

Then
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lim
V→∞

µV
β (O) = lim

V→∞
µ̃V
E(O)

and µ’s are equivalent in the thermodynamic limit.

In case of phase transitions extra labels γ, γ̃ are added to
identify the extremal distributions and it is possible to
establish a correspondence between the extra labels γ←→ γ̃
so that the equivalence can be equally formulated.

Is it possible a similar description of the stationary states
of nonequilibrium systems?

Think of a system whose evolution is described by an
evolution eq. of u on a “phase space” M depending on a
parameter R:

u̇ = fR(u)

Typically eq. will be difficult and even existence-1-qness
will be open problems.
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For instance consider a system of infinitely many hard
spheres of given density or an incompressible 3D NS fluid
with periodic b.c.

Therefore the eq. will have to be regularized in fV
R (u)

where V is a regularization parameter.

E.g. in stat. mechanics V is typically the container size:
and the problem becomes finding the observables whose
averages have a limit as V →∞. They exist and are O(u)
which only depend on the points of u in a region K ≪ V ,
local observables.

For the NS equation the regularization parameter could be
a “UV cut-off” N . And it is natural to consider as
observables whose average admit a limit as N →∞ the
O(u) which only depend on the Fourirer’s components k of
u ith |k| < K ≪ N .
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Once the class of observables is restricted it is to be
expected (?) that several equations of motion could
describe the stationary states of the same system.

E.g. the h.c. system can be described by the Hamilton eq.s
but also by the isothermal equations

q̇ = p, ṗ = −∂qV (q)− α(p,q)p

where α(p,q) is a multiplier which imposes T (p) = const.

The stationary states of the two equations will be
parameterized by the energy E or by the kinetic energy T ;
stationary states will be resp. δ(H(p,q)−E)dpdq or

e−β0V (q)δ(T (p)−Nβ−1)dpdq, β0 = β(1−
1

3N
)

Roma2, May 22 2019 4/23



Interesting cases arise when the system is described by
equations which obey a symmetry but they are
phenomenologically described by non symmetric equations
(cases of spontaneously broken symmetry).

Consider, as a typical case, the Navier-Stokes equation: in
the case of the above incompressible fluid they can be
regarded as Euler equations subject to a thermostat
absorbing the heat due to the viscosity: which turns the
equations into time-reversal breaking ones.

A paradigmatic case is a fluid in a periodic container
2/3-Dim., incompressible, at fixed forcing F (smooth,
‖F‖2 = 1) and kept at const. temp. by a thermostat. to
dissipate heat via the force due to viscosity ν = 1

R

(consistently with incompressibility).
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NSirr: u̇α = −(~u · ∂)uα − ∂αp+
1
R
∆uα + Fα, ∂αuα = 0

Velocity: ~u(x) =
∑

~k 6=~0 uk
ik⊥

|k|
eik·x, uk = u−k (NS-2D)

NS2,irr: u̇k =
∑

k1+k2=k

(k⊥

1 ·k2)(k2
2−k2

1)

2|k1||k2||k|
uk1uk2 − νk2uk + fk

Immagine to truncate eq. supposing |kj| ≤ V . Cut-off UV ,
V , is temporarily fixed (BUT interest is on V →∞).

NS 2D becomes an ODE in a phase space MV with
4V (V + 1) dimen. (In 3D O(8V 3)). Exist. & 1-ness trivial
at D = 2, 3.

Remark that the map Iuα = −uα implies ISt 6= S−tI, ⇒:
irreversibility.

Given init. data u, evolution t→ Stu generates a steady
state (i.e. a probability distr.) µirr,V

R on MV .
Unique aside a volume 0 of u’s, for simplicity
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Likely not so at small R: “NS gauge symmetry” exists..??
[1, 2, 3]. As R varies the steady distr. µirr,V

R (du) form a
collection E irr,V : to be named

the statistical ensemble of stationary

nonequilibrium distrib. for NSirr.

And average energy ER, average dissipation EnR,
Lyapunov spectra (local and global) ... will be defined, e.g.:

ER =
∫
MV

µirr,V
R (du)||u||22, EnR =

∫
MV

µirr,V
R (du)||ku||22

Consider new equation, NSrev:

u̇k =
∑

k1+k2=k

(k⊥
1 · k2)(k

2
2 − k2

1)

2|k1||k2||k|
uk1

uk2
− α(u)k2uk + fk

with α such t. En(u) = ||ku||22 is exact const of motion:

α(u) =

∑
k k

2F−kuk∑
k k

4|uk|2
e.g . D = 2
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The new equation keeps ν
∑

k |k|
2|uk|

2 = ν·enstrophy
exactly constant
New eq. is reversible: IStu = S−tIu (as α is odd).
α is “a reversible viscosity”; (if D = 3 α is ∼different)

Can be considered as model of “thermostat” acting on the
fluid and should (?) have same effect of constant friction.

Evolution NSrev generates a family of steady states Erev,V

on MV : µ
rev,V
En parameterized by the constant value of

enstrophy En =
∑

k |k|
2|uk|

2.

α(u) in NSrev will wildly fluctuate at large R (i.e. small
viscosity ν) thus “self averaging” to a const. value ν
“homogenizing” the eq. into NSirr with viscosity ν.

Of course we could impose a multiplier α′(u) =
∑

k fkuk∑
k |k|2|uk|2

which fixes energy E =
∑

k |uk|
2 and obtain diff. rev. eq.
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The equivalence mechanism is suggested by analogy with
Stat. Mech.

(1) analog of “local observables”: functions O(u) which
depend only on uk with |k| < K. “Locality in momentum”
(2) analog of “Volume”: just the cut-off N confining the k

(3) analog of the “state parameter”: the viscosity ν = 1
R

(irrev. case) or the enstrophy En (rev. case) (or energy E).

Equivalence should be obtained at N =∞ corresponding
to the Thermodynamic limit V →∞.

The averages of large scale observables will tend to the
same values as R→∞ for µirr,V

R ∈ E irr,V of NSirr and for

µrev,V
En ∈ Erev,V provided, D(u)

def
=

∑
k k

2|uk|
2 is s.t.

µirr,V
R (D) = En, or µrev,V

En (α) =
1

R
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Remark that multiplying the NS eq. by uk and sum on k:

1

2

d

dt

∑

k

|uk|
2 = −γD(u) +W (u), γ = ν or α(u)

here D(u) =
∑

k k
2|uk|

2 = enstrophy and
W =

∑
k fku−k = work per unit time of the external force.

Hence time averaging

1

R
µirr,V
R (D) = µirr,V

R (W ), µrev,V
En (α)En = µrev,V

En (W )

But W is local (as f is such) and, if the conjecture holds,
has equal average under the equivalence condition: hence
µirr,V
R (D) = En implies the relation

lim
R→∞

Rµrev,V
En (α) = 1
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This becomes a first rather stringent test of the conjecture.

Since the equivalence rests on the rapid fluctuations of α(u)
a second idea is that if N is kept finite then it could be,
more generally if O is a large scale observable it should be:

µirr,V
R (O) = µrev,V

En (O)(1+ o(1/R)) if µirr,V
R (D) = En

So a different idea arises. In many phenomenological and
dissipative equations of the form ẋ = f(x)− νx + g the
parameter ν can be replaced by α(x) so that x2=xonst.
If for ν = 0, g = ~0 the motion is strongly chaotic then

ẋ = f(x)− νx + g,

ẋ = f(x)− α(x)x+ g, α(x) =
g · x

x2

Equivalence if ν → 0 between stationary µirr
ν and µrev

E if

µirr
ν (α) = E

What is special to NS to conj. that R→∞ is not needed?
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It is its being a scaling limit of a microscopic equation
whose evolution is certainly chaotic and reversible.

Therefore NS is different from the many phenomenological
and dissipative equations which are not directly related to
fundamental equations.

For the latter cases strong chaos is necessary if a friction
parameter is changed into a fluctuating quantity.
There are many examples of phenomenological equations

(1) (highly) truncated NS equations (V <∞ fixed), [4],
(2) NS with Ekman friction (−ν~u instead of ν∆~u), [5, 6],
(3) Lorenz96 model, [7],
(4) Shell model of turbulence, (GOY), [8]

in such equations R→∞ is necessary: and, for each of
them, it has been tested in few cases.
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But it will be useful to pause to illustrate a few prelimnary
simulations and checks.

Unfortunately the simulations are in dimension 2 (D = 3 is
at the moment beyond the available (to me) computational
tools) although present day available NS codes should be
perfectly capable to perform detailed checks in rapid time.
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FigA32-19-17-11.1-detail

Fig.1-dettaglio: Running average of reversible friction

Rα(u) ≡ R
2Re(f−k0

uk0
)k2

0∑
k k4|uk|2

, superposed to conjectured 1 and to

the fluctuating values of Rα(u). Initial transient is clear. Evol.:

NSrev, R=2048, 224 modes, Lyap. ≃ 2, x-unit = 219

Roma2, May 22 2019 14/23



�✁✂

�✄☎

�✄✂

�☎

✂

☎

✄✂

✄☎

✁✂

☎✂✂ ✄✂✂✂ ✄☎✂✂ ✁✂✂✂ ✁☎✂✂ ✆✂✂✂ ✆☎✂✂

✝✞✟�✄✠✄✄�✁✂✂�✡✂✂✂✝ ✟ ✄☛✁

✝✞✟�✄✠✄✄�✁✂✂�✡✂✂✂✝ ✟ ✄☛✁

✝✞✟�✄✠✄✄�✁✂✂�✡✂✂✂✝ ✟ ✄☛☎ ☞✌☞✍✎ ✄✂

✄

FigA32-19-17-11.1-all

Fig.1: As previous fig. but time 8 times longer: data reported

“every 10”, or black.
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Fig.2: NSirr: Running average of the work R
∑

k F−kuk|
(violet) in NSrev; and convergence to average enstrophy En

(orange straight line),
blue is running average of enstrophy

∑
k k

2|uk|
2 in NSirr,

enstrophy fluctuations violet in NSirr: R=2048.
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FigL16-19-17-11.01

Fig.3: Spectrum (local) Lyapunov V=48 modes reversible &

irreversible superposed; R=2048.

The difference can be made visible as:
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Fig.4: Relative Difference of (local) Lyap. exponents in Fig.
preced. R=2048, 48 modes.

Graph of
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k
−λirr

k
|
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k
|,λirr

k
|)
; Level line marks 1%.
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Fig.5: More Lyapunov spectrume in 15× 15 modes (i.e. for
NS2D rever. & irrev. R = 2048, 240 modes on 213 steps.
Spectra evalued every 219 integr. steps. (and averaged over
200 samples).
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Fig.6: Relative difference of the (local) Lyapunov exp. of the

preceding fig. 240 modes. The line is the 4% level.
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The following Fig.7 (similar to Fig.1 but w. NSirr):
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Fig.7: As Fig.1 but running average of reversible friction Rα(u)

regarded as observ. in NSirr, superposed ro value 1 and to

fluctuating values of Rα(u). An extension of conjecture since

α(u) is not local.
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The figure suggests (from the theory of Anosov systems):
(1) Check the “Fluctuation Relation” in the irreversible

evollution: for the divergence (trace of the Jacobian)
σ(u) = −

∑
k ∂uk

(u̇k)rev: let p (time τ average of σ
〈 σ 〉

)

p
def
=

1

τ

∫ τ

0

σ(u(t))

〈σ 〉irr
dt,

then a theorem for Anosov systems:

Psrb(p)

Psrb(−p)
= eτ 1p 〈σ 〉irr (sense of large deviat. as τ →∞)

it is a “reversibility test on the irreversible flow”

Anosov systems play the role, in chaotic dynamics

that harmocic oscillators cover for ordered motions.

They are a paradigm of chaos.
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The idea is based on Sinai (for Anosov syst.), Ruelle,

Bowen (for Axioms A syst.),[9, 10, 11]

Attention on Anosov syst. leads to:

Chaotic hypothesis: An empirically chaotic evolution
takes eventually place on a smooth surface A, “attracting
surface” in phase space and, on A, the evolution (map S or
flow St) is a Anosov syst.

It is a strict and general heuristic interpretation of the
original ideas on turbulence phenomena, [11], see [12,
endnote 18], [13, 14], [15].

BUT: various are the obstacles to its applicability and
resolving them leads to new interesting problems.
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