
Entropy, Irreversibility and Probability in chaotic

systems

Irreversibility became central to thermodynamics after
Carnot’s theorem determining the maximum efficiency ηmax

of a thermic machine: and ηmax could not be reached as it
had to work reversibly, hence infinitely slow.[1]

Carnot’s theorem (1824) led Clausius (1850-1865) to
introduce entropy and to formulate the II principle of
Therm. relying on Carnot’s theorem, which implied the
possibility of defining entropy variation between
equilibrium states A and B.[2, 3, 4].

Just construct a reversible transf. from A to B and add up
the amounts of heat absorbed from external reservoirs
divided by the respective absolute temperature, that by the
time had been identified with the system average kinetic
energy. [5]:
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S(B)− S(A) =
∑ Qi

Ti

Atomists immediately asked for the mechanical meaning of
entropy. Boltzmann (1866) proposed a probabilistic
interpretation: observables, in equilibrium, have values
which are actually averages of (often rapidly) changing
instantaneous values.

Therefore an equil. state can be identified with the average
values of the observables.

His first hypotesis supposed that the microscopic motion is
periodic: and an equilibrium state could be identified with
a single periodic trajectory. The averages would simply be
deduced via the fraction of time spent in a segment of the
periodic trajectory, viewed as a closed path in phase space
(i.e. space points ≡ set of molecules coordinates).
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The assumption might seem surprising, but B. shewed that
a well known mechanical property, namely the principle of
least action, implied that the action

S(A) =

∮

A

~p · d~q

of the periodic trajectory had variations between A and B

independent of the transformation, provided it took place
so slowly that at every time it could be considered periodic.

The function S was identified with the entropy because
interpreting average kinetic energy as temperature and
calling dL the average work reversibly performed by the
external forces it followed that the variation of the internal
energy dU had the thermodynamic property

dU + dL

T
= dS

thus justifying the interpretation as Clausius’ entropy.
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By 1868 he had completely founded modern Statistical
Mechanics and introduced the microcanonical ensemble.
Periodicity had become the ergodic hypothesis.
Periodic microscopic motions were replaced by a probability
distribution (1868) describing an equil. state in the form

ρ(~p, ~q)d~pd~q
and “therefore” in a motion going close to all phase space
points (i.e. being dense) ρ had to be positive and invariant:
hence a function of the energy H .
B. did not think about the possibility that other constants
of motion exist (aside obvious exceptions) and may be not
smooth: and existence of only one smooth const. of motion
is the modern definition of ergodicity of a mech. system
with conservative forces.

B. tried to illustrate this point by giving an example.
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Probably continuing to think so, he proceeded to show that
the same system could be described by very different
probability distributions provided contained in a large
volume V and the interesting observables depended on the
particles in a region Λ ⊂ V much smaller (local observables).

Is it possible to carry the program of B. to nonequilibrium
phenomena? What about friction and irreversibility?

The first difficulty, even restricting attention to stationary
states, is that in non equilibrium there are external forces
which perform work generating heat and heat has to be
removed. So dissipation is present.

In the equations of motion ẋi = fi(x) dissipation appears
because, Liouville’s theorem, a volume element dx evolves
in time dt into a volume element dx′ = (1 + div · dt)dx with

div =
∑

i

∂fi(x)
∂xi

and typically div < 0 and dx′ < dx.
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For instance in the incompressible Navier-Stokes eq., for
simplicity in container with periodic b.c. [0, 2π]d, d = 2, 3,
velocity is u(x) represented via Fourier’s transf.

u(x) =
∑

k 6=0

uke
2π ik·x, uk · k = 0

If (Pk= proj. on plane orth. to k), NS equation is :

u̇k = −i
∑

k1+k2=k

(uk1 ·k2)Pkuk2−νk
2uk+fk = Qk(u)−νk

2uk+fk

and the divergence is div = −ν
∑

k
k2 < 0.

Actually div = −∞ and, for this reason, the eq will be
“regularized” by restricting all k’s to be |k| < N , turning Q

into QN and the problem into studying properties of the
reg. solutions which become N -indep. as N →∞.
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Phase space contraction, always accompanying dissipation,
implies that probabilities describing stationary states must
be concentrated on sets of 0-volume: hence averages cannot
be expressd by volume integrals.

So the basic B.’s assumption that averages of observables O
could be expressed via integrals

∫
O(~p, ~q)ρ(~p, ~q)d~pd~q cannot

be accepted, at least not for all O, in nonequilibrium.

New idea has been that in Physics systems are studied
following evolution of samples generated by some
“protocol”. The procedure, even if carefully built is subject
to unknown influences so that the probability distrib P0 of
the data produced is unknown.

It has been proposed that it be P0 = ρ0(~p, ~q)d~pd~q with ρ0
continuous but unknown.
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This is a very strong assumption (although some may
consider it not an assumption at all).

Surprisingly, in systems with chaotic evolution, it allows
the unique identification of the invariant probability
distribution P for averages of the observables. [6, 7].

It is only necessary to interpret chaotic evolution in terms
of the paradigm offered, in the elementary dynamical
systems theory for Chaos, by the hyperbolic dynamical
systems x→ Stx.

In such systems following the motion of a point x in phase
space one sees it as a fixed point which is hyperbolic.

Thus the B. paradigm, identifying periodic motion as the
“key”, is replaced by the (equally “disturbing”) paradigm
identifying chaotic systems with hyperbolic systems.
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The main point is that hyperbolic systems are very well
understood, just as the dynamics of harmonic motions is.

In B.’s case periodic motion assumption was likely to be (in
general) mathematically false and yet it generated Stat.
Mech., likewise the hyperbolicity may be false in most cases
of interest: but just like the periodicity or quasi periodicity
is a paradigm for the ordered motion, so hyperbolic systems
are the paradigm of chaotic motions.

Hyperbolicity hypothesis opens the way to deriving quite a
few physically relevant consequences.

Among B.’s equilibrium results is that the same system can
be described by completely different probability dist. on
phase space: which nevertheless attribute the same

average values to local observables, i.e. depending on
particles located in volumes ≪ than the container vol. V .
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E.g. investigate again the question of compatibility
between microscopic reversibility and macroscopic
irreversibility.
Start remarking that reversibility being a fundamental
symmetry cannot be lost.

To be concrete consider an incompressible fluid, and to
further simplify, imagine it in a periodic container [0, 2π]d,
d = 2, 3 and subject to a simple “large scale” stirring force
f . The NS equation is again, k · uk = 0 and

u̇k = QN (u)k − νk2uk + fk

and the flow t→ Stu is irreversible: the temperature
variable T (x) is absent and the density is constant, which
physically means that a thermostat acts on the system
taking away the heat generated by the stirring.
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It is phenomenologically represented by the viscosity term
−νk2uk and the stationary states of the fluid are a family
P irr of probability distributions PN

ν on the velocity fields,
parameterized by the viscosity ν.

However viscosity, being phenomenological, can be replaced
by other ways of thermostating the fluid: for instance
instead of adding to the Euler equations the viscous force
−νk2uk to avoid blow up, one could add to Euler eq. a
force which keeps exacly constant the “enstrophy”

E(u) =
∑

k
k2|uk|2.

This is a non-holonomic constraint that can be generated,
for instance, by a force determined by Gauss’ least effort
principle: which here amounts to replacing

−νk2uk ⇒ −α(u)k2uk
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From the new viewpoint one physical system on which a
thermostat acts is governed by two equations

u̇k = Q(u)N
k
−

{
ν k2uk

α(u)k2uk

+ fk

An elementary application of Gauss’ p. yields in d = 2

α(u) =

∑
k
k2f−k · uk∑
k
k4|uk|2

Imposing that the stirring does not heat the incompressible
fluid can be achieved either by a phenom. friction force or
by a force keeping D(u) =

∑
k
k2|uk|2 constant, which

amounts to a variable friction. I.e. friction is not
fundamental.

Of course one can envisage other ways to balance stirring
and heating. For instance the Enstrophy constraint could
be replaced by the constraint of constant Energy.
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If this is correct we have two equations for the same
system: only possibility is their equivalence.

Remark that while the first flow, t→ Sirr
t u is irreversible,

i.e. the time reversal symmetry Iu = −u is such that
ISirr

t 6= Sirr
−t I, the second is reversible because α(u) is odd:

ISrev
t ≡ Srev

−t I

Hence the stationary states of the fluid will be described by
two collection of stationary prob. distr. Context suggests
strong analogy with equil. Stat. Mech.:

• a cut-off N : analog to container volume V of a gas.
• a parameter ν, which parameterizes the stationary distrib.
Pirr,N

ν of the irreversible equation analogous
to the parameter β in the canonical ensemble
• a parameter E which parameterizes the stationary distrib.
P̃

rev,N
E of the reversible equation analogous to the

parameter E in the microcanonical ensemble
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To check the possibility that the same system could be
described by different equations it remains to identify the
class of observables with equal averages in corresponding
ensembles and the correspondence E←→ν:
•observables will be O(u) which depend on finitely
many Fourier comp. uk: analogous to the observables
depending on the partices in a finite subvolume Λ ⊂ V

•corresponndence is established by the relation

Pirr,N
ν (

∑

k

k2|uk|
2) = E ∗

Then the precise conjecture is: ∗ implies

lim
N→∞

Pirr,N
ν (O) = lim

N→∞
P̃rev,N

E (O)
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This means that in a fluid, dissipation can be modeled
1) either via a viscosity force:

u̇k = −Q(u)k − νk2uk + fk

2) or requiring the enstrophy D(u) to remain constant

u̇k = −Q(u)k − α(u)k2uk + fk

The conjecture is being tested and the results of the first
few tests ar repoted in the following graphs.
1) tests began from a rigorous consequence

P̃rev,N
E (α) = ν

showing conjecture to be about a homogeneization problem.
2) Then one can take a special Fourier’s component, like
Reu2,2 and study its average in the two evolutions.
3) extending the conjecture: Lyapunov spectrum of two
corresponfing distr. can be studied
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values averaging to the central line (i.e. “error estimate”)
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Worcester, 12 April 2019 24/14



Quoted references

[1] S. Carnot.
Réflections sur la puissance motrice du feu et sur les machines propres à développer cette
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Über einige für Anwendung bequeme formen der Hauptgleichungen der mechanischen
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