
Statistical ensembles for Navier-Stokes equation

Statistical properties of an Equilibrium state are obtained
by several different probability distributions, e.g. canonical
or microcanonical: which attribute the same average to
physically interesting obervables. Reminder:

The probability distr. describing a system with ρV particles
in volume V can be collected in families Emc, E c whose
elements are parameterized by parameter E or, resp., β.

1) observables of interest are local observables O ∈ Oloc:
O(p,q) depending on p,q only through coordinates of
particles qi ∈ q with qi ∈ Λ where Λ is a volume ≪ V

2) the probability distribution µV
β ∈ E c and µ̃V

E ∈ Emc are
correspondent if β, E are s.t.

µV
β (HV (p,q)) = E

Then
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lim
V→∞

µV
β (O) = lim

V→∞
µ̃V
E(O)

and µ’s are equivalent in the thermodynamic limit.

In case of phase transitions extra labels γ, γ̃ are added to
identify the extremal distributions and it is possible to
establish a correspondence between the extra labels γ←→ γ̃
so that the equivalence can be equally formulated.

Is it possible a similar description of the stationary states
of nonequilibrium systems?

Think of a system whose evolution is described by an
evolution eq. of u on a “phase space” M depending on a
parameter R:

u̇ = fR(u)

Typically eq. will be difficult and even existence-1-qness
will be open problems.
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For instance consider a system of infinitely many hard
spheres of given density or an incompressible 3D NS fluid
with periodic b.c.

Therefore the eq. will have to be regularized in fV
R (u)

where V is a regularization parameter.

E.g. in stat. mechanics V is typically the container size:
and the problem becomes finding the observables whose
averages have a limit as V →∞. They exist and are O(u)
which only depend on the points of u in a region K ≪ V ,
local observables.

For the NS equation the regularization parameter could be
a “UV cut-off” N . And it is natural to consider as
observables whose average admit a limit as N →∞ the
O(u) which only depend on the Fourirer’s components k of
u ith |k| < K ≪ N .
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Once the class of observables is restricted it is to be
expected (?) that several equations of motion could
describe the stationary states of the same system.

E.g. the h.c. system can be described by the Hamilton eq.s
but also by the isothermal equations

q̇ = p, ṗ = −∂qV (q)− α(p,q)p

where α(p,q) is a multiplier which imposes T (p) = const.

The stationary states of the two equations will be
parameterized by the energy E or by the kinetic energy T ;
stationary states will be resp. δ(H(p,q)−E)dpdq or

e−β0V (q)δ(T (p)−Nβ−1)dpdq, β0 = β(1− 1

3N
)
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Interesting cases arise when the system is described by
equations which obey a symmetry but they are
phenomenologically described by non symmetric equations
(cases of spontaneously broken symmetry).

Consider, as a typical case, the Navier-Stokes equation: in
the case of the above incompressible fluid they can be
regarded as Euler equations subject to a thermostat
absorbing the heat due to the viscosity: which turns the
equations into time-reversal breaking ones.

A paradigmatic case is a fluid in a periodic container
2/3-Dim., incompressible, at fixed forcing F (smooth,
‖F‖2 = 1) and kept at const. temp. by a thermostat. to
dissipate heat via the force due to viscosity ν = 1

R

(consistently with incompressibility).
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NSirr: u̇α = −(~u · ∂)uα − ∂αp+
1
R
∆uα + Fα, ∂αuα = 0

Velocity: ~u(x) =
∑

~k 6=~0 uk
ik⊥

|k|
eik·x, uk = u−k (NS-2D)

NS2,irr: u̇k =
∑

k1+k2=k

(k⊥

1 ·k2)(k2
2−k2

1)

2|k1||k2||k|
uk1uk2 − νk2uk + fk

Immagine to truncate eq. supposing |kj| ≤ V . Cut-off UV ,
V , is temporarily fixed (BUT interest is on V →∞).

NS 2D becomes an ODE in a phase space MV with
4V (V + 1) dimen. (In 3D O(8V 3)). Exist. & 1-ness trivial
at D = 2, 3.

Remark that the map Iuα = −uα implies ISt 6= S−tI, ⇒:
irreversibility.

Given init. data u, evolution t→ Stu generates a steady
state (i.e. a probability distr.) µirr,V

R on MV .
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Suppose µirr,V
R unique aside a volume 0 of u’s, for simplicity.

As R varies the steady distr. µirr,V
R (du) form a collection

E irr,V : to be named

the statistical ensemble of stationary
nonequilibrium distrib. for NSirr.

And average energy ER, average dissipation EnR,
Lyapunov spectra (local and global) ... will be defined, e.g.:

ER =
∫
MV

µirr,V
R (du)||u||22, EnR =

∫
MV

µirr,V
R (du)||ku||22

Consider new equation, NSrev:

u̇k =
∑

k1+k2=k

(k⊥
1 · k2)(k

2
2 − k2

1)

2|k1||k2||k|
uk1

uk2
− α(u)k2uk + fk

with α such t. En(u) = ||ku||22 is exact const of motion:

α(u) =

∑
k k

2F−kuk∑
k k

4|uk|2
e.g . D = 2
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The new equation keeps ν
∑

k |k|2|uk|2 = ν·enstrophy
exactly constant
New eq. is reversible: IStu = S−tIu (as α is odd).
α is “a reversible viscosity”; (if D = 3 α is ∼different)
Can be considered as model of “thermostat” acting on the
fluid and should (?) have same effect of constant friction.

Evolution NSrev generates a family of steady states Erev,V
on MV : µ

rev,V
En parameterized by the constant value of

enstrophy En =
∑

k |k|2|uk|2.
α(u) in NSrev will wildly fluctuate at large R (i.e. small
viscosity ν) thus “self averaging” to a const. value ν
“homogenizing” the eq. into NSirr with viscosity ν.
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A first conjecture at small ν = 1
R
concerns the observables

of large scale O, namely functions on the periodic
container, i.e. functions O on MV with Fourier’s transform
zero for |k| > K, and K fixed.

The averages of large scale observables will tend to the
same values as R→∞ for µirr,V

R ∈ E irr,V of NSirr and for

µrev,V
En ∈ Erev,V provided, D(u) def

=
∑

k k
2|uk|2 is s.t.

µirr,V
R (D) = En, or µrev,V

En (α) =
1

R

Remark that multiplying the NS eq. by uk and sum on k:

1

2

d

dt

∑

k

|uk|2 = −γD(u) +W (u), γ = ν or α(u)

here D(u) = ∑
k k

2|uk|2 = enstrophy and
W =

∑
k fku−k = work per unit time of the external force.
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Hence time averaging

1

R
µirr,V
R (D) = µirr,V

R (W ), µrev,V
En (α)En = µrev,V

En (W )

But W is local (as f is such) and, if the conjecture holds,
has equal average under the equivalence condition: hence
µirr,V
R (D) = En implies

lim
R→∞

Rµrev,V
En (α) = 1

becoming a first rather stringent test of the conjecture.

More generally if O is a large scale observable it should be:

µirr,V
R (O) = µrev,V

En (O)(1+ o(1/R)) if µirr,V
R (D) = En

But is R→∞, i.e. strong caos, necessary?

Here a particular feature of the NS equation becomes
important.
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Namely its being a scaling limit of a microscopic equation
whose evolution is certainly chaotic and reversible.

Therefore NS is different from the many phenomenological
and dissipative equations which are not directly related to
fundamental equations.

For the latter cases strong chaos is necessary if a friction
parameter is changed into a fluctuating quantity.
There are many examples of phenomenological equations

(1) (highly) truncated NS equations (V <∞ fixed), [1],
(2) NS with Ekman friction (−ν~u instead of ν∆~u), [2, 3],
(3) Lorenz96 model, [4],
(4) Shell model of turbulence, (GOY), [5]

in such equations R→∞ is necessary: and, for each of
them, it has been tested in few cases.
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The NSirr can be derived if V =∞ from “first principles”,
(Maxwell, from molecular motion [6]). And microscopic
motions are certainly chaotic.
There should not be conditions of developed chaos,
not even when the motion is laminar.

Therefore consider the NS equations with UV cut-off V in
dimension 2 or 3. The following conjecture emerges:

Large scale observables, e.g. O’s depending only on uk with
|k| < K, (K arbitrary), have equal averages in the steady
distr. in E irr and Erev obtained in the limit V →∞

lim
V→∞

µr,V
En(O) = lim

V→∞
µi,V
R (O)

provided µi,V
R (D) = En, which therefore implies

Rµr,V (α)−−−→
V→∞

= 1 without requiring R→∞).
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Analogy with equilibrium statistical mechanics is manifest

(a) The UV regularization (necessary if D = 3) V plays the
role of the finite container volume

(b) K restricts to local observables

c) Reynolds R play role inverse canonical temperature β
(i.e. viscosity ν←→temperature), while the dissipation (i.e.
enstrophy) En the role of microcanonical energy.

But it will be useful to pause to illustrate a few prelimnary
simulations and checks.

Unfortunately the simulations are in dimension 2 (D = 3 is
at the moment beyond the available (to me) computational
tools) although present day available NS codes should be
perfectly capable to perform detailed checks in rapid time.
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FigA32-19-17-11.1-detail

Fig.1-dettaglio: Running average of reversible friction

Rα(u) ≡ R
2Re(f−k0

uk0
)k2

0∑
k k4|uk|2

, superposed to conjectured 1 and to

the fluctuating values of Rα(u). Initial transient is clear. Evol.:

NSrev, R=2048, 224 modes, Lyap. ≃ 2, x-unit = 219
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Fig.1: As previous fig. but time 8 times longer: data reported

“every 10”, or black.

Zurigo, 8 May 2019 15/23



�✁

✂✁✁

✂�✁

✄✁✁

✄�✁

☎✁✁

☎�✁

✂✁✁✁ ✄✁✁✁ ☎✁✁✁ ✆✁✁✁ �✁✁✁ ✝✁✁✁

✞✟✠✡☛✠✄✁✁✠✝✁✁✁☞✁✞ ✌ ✂✍☎

✞✎✌✠✁✏✂✂✠✄✁✁✠✝✁✁✁✞ ✌ ✂✍✆

✞✎✌✠✁✏✂✂✠✄✁✁✠✝✁✁✁✞ ✌ ✂✍✑ ✡✒✡✓✔ ✂✁

✕✖

FigEN32-19-17-11.1

Fig.2: NSirr: Running average of the work R
∑

k F−kuk|
(violet) in NSrev; and convergence to average enstrophy En

(orange straight line),
blue is running average of enstrophy

∑
k k

2|uk|2 in NSirr,

enstrophy fluctuations violet in NSirr: R=2048.
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FigL16-19-17-11.01

Fig.3: Spectrum (local) Lyapunov V=48 modes reversible &

irreversible superposed; R=2048.

The difference can be made visible as:
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Fig.4: Relative Difference of (local) Lyap. exponents in Fig.
preced. R=2048, 48 modes.
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k
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k
|)
; Level line marks 1%.
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Fig.5: More Lyapunov spectrume in 15× 15 modes (i.e. for
NS2D rever. & irrev. R = 2048, 240 modes on 213 steps.
Spectra evalued every 219 integr. steps. (and averaged over
200 samples).
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Fig.6: Relative difference of the (local) Lyapunov exp. of the
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The following Fig.7 (similar to Fig.1 but w. NSirr):
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Fig.7: As Fig.1 but running average of reversible friction Rα(u)

regarded as observ. in NSirr, superposed ro value 1 and to

fluctuating values of Rα(u). An extension of conjecture since

α(u) is not local.
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The figure suggests (from the theory of Anosov systems):
(1) Check the “Fluctuation Relation” in the irreversible
evollution: for the divergence (trace of the Jacobian)
σ(u) = −∑

k ∂uk
(u̇k)rev: let p (time τ average of σ

〈 σ 〉
)

p
def
=

1

τ

∫ τ

0

σ(u(t))

〈σ 〉irr
dt,

then a theorem for Anosov systems:

Psrb(p)

Psrb(−p)
= eτ 1p 〈σ 〉irr (sense of large deviat. as τ →∞)

it is a “reversibility test on the irreversible flow”

Anosov systems play the role, in chaotic dynamics
that harmocic oscillators cover for ordered motions.
They are a paradigm of chaos.
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The idea is based on Sinai (for Anosov syst.), Ruelle,
Bowen (for Axioms A syst.),[7, 8, 9]

Attention on Anosov syst. leads to:

Chaotic hypothesis: An empirically chaotic evolution
takes eventually place on a smooth surface A, “attracting
surface” in phase space and, on A, the evolution (map S or
flow St) is a Anosov syst.

It is a strict and general heuristic interpretation of the
original ideas on turbulence phenomena, [9], see [10,
endnote 18], [11, 12], [13].

BUT: various are the obstacles to its applicability and
resolving them leads to new interesting problems.
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Problem: if A ⊂MV e A has lower dimension, the time
reversal symmetry I cannot be applied because IA 6= A.
This certainly occurs if V becaomes large enough, [14, 15].

However a further symmetry P may exist between A and
IA commuting with evolution St: PSt = StP .

Then P ◦ I : A → A becomes a time reversal symmetry of
the motion restricted to A. And there are geometrical
conditions which in special cases guarantee existence of P
(“Axiom C” systems, [16]).

However even supposing existence of P , still is is not
possible to apply FR because, at best, it would concern the
contraction σA(u) of A and not the σ(u) of MV .

The σ(u) riceives contributions from the exponential
approach to A: which obviously do not contribute to σA.
How to recognize such contributions ?
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Help could come from “pairing rule”
Often the Lyapunov exponents (local and global) arise in
pairs with almost constant average or average on a regular
curve.

In several systems the pairs have an exactly constant
average.

An idea can be obtained from the local exponents (the
eigenvalues of the simmetric part of the Jacobian matrix of
the evolution).
For instance in NS it is
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Fig.8: R = 2048, 960modes, local exponents ordered
decreasing: s.t. λk, 0 ≤ k < d/2,
and increasing λd−k, 0 ≤ k < d/2,
the line 1

2
(λk + λd−1−k) and the line ≡ 0. Irreversible case

and apparent pairing rule
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The graph of the reversible exponents is again almost
superposed to the above and the following figure gives the
relative difference of the 960 correponding exponents.
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Fig.9: Relative difference
|λrev

k
−λirr

k
|

max(|λrev

k
|,|λirr

k
|)
between reversible

and irreversible local exp. in Fig.7. Line = 4% level.
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R = 2048, 960 modes.
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The figures indicate:
(a) revers. and irrrev. exponents are very close: but this
does not follow from the conject. (as the exponents are
not local observables) → suggests: possible equivalence for
a larger class of observables.
(b) It has been proposed that the attracting surface A has
dimension = twice the number of positive exponents: which
implies in cases of pairing that it is twice the number of
pairs with opposite sign.

Implication: σA(u) is proportional to the total σ(u) in the
cases of pairing to a constant

σA(u) = ϕσ(u), ϕ =
number of opposite pairs

total number of pairs

and in the case of pairing to a more general curve
σA(u) = σ(u) +

∑
pairs<0(λj + λ′

j). Why?
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Idea: negative pairs correspond to the exponents associated
with the attraction to A: hence do not count for the
computation of σA.
The FR will hold, by the C.H., but with a slope ϕ < 1:

τpϕσ, rather than τpσ : in fig. ϕ ≃ 450

490

If true: this will be a check of reversibility in NSirr.

IF FR holds, it is possible to think to one more statistical
ensemble Est consisting in the stationary PDF’s for NSst

u̇α = −(~u · ∂)uα − ∂αp+ ν(u)∆uα + Fα, ∂αuα = 0

where ν(u) is a stochastic process (e.g. gaussian)
uncorrelated but with average 〈 ν 〉 = 1

R
and with a

distribution respecting the FR (i.e. dispersion = average in
the gaussian case).
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More elaborate checks are being attempted:

(a) moments of large scale observables rev & irr

(b) local Lyap. exponents of other matrices different from
the Jacobiank

(c) check of the fluctuation rel., particularly in the irrev.
cases, which from the previous figures is shown to be
accessible already with 960 modes and R = 2048: ⇒ FR
with slope ϕ < 1 (Axiom C ?), [12, 11].

(d) More values of R and N an interesting example is
Fig.10 with R much larger than in the preceding cases.
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Example of moments of local observables:

�✁✂
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☎✁✞

✟�� ☎��� ☎✟�� ✆��� ✆✟�� ✝��� ✝✟�� ✞���

✠✡☛☎☛☎✁☎✁�☛✝☞��✠ ✡ ☎✌✍✎✆✏✆✁✑✄✞✆��✞��✟✞✝✟☞✒✓�☎✔

☎

. FIGu0-64-191711-10

Fig.11: Running averages rev of |Reu11|4/〈Reu11|4 〉irr,
R = 2048, 224 modes. Conjecture yields ratio tending to 1
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. FIGu1-64-191711-10

Fig.12: Same running averages rev of
|Reu11|4/〈Reu11|4 〉irr, for R = 2048, and their rev.
fluctuations, 224 modes.
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Finally a rigorous estimate of the number N of Lyap. exp.
(local and global ordered decreasing), needed so that their
sum remains > 0:

≤̃
√
2A(2π)2

√
R
√
REn,A = 0.55..

in dimension 2, while at dimension 3 a similar estimate
holds but it involves a norm different from the enstrophy.
(Ruelle if d = 3 and Lieb if d = 2, 3, [17, 15]. Applied here
it would give N ∼ 2.104 for NS 2D: not accessible in the
simulations presented here but not impossible in principle
with available computers and computation methods already
available, at least if D = 2.

Finally a warning that further careful checks are required,
particularly because the inspiring ideas are, to say the
least, controversial as shown by the following quote,
selected among the several, from a well known treatise:

Zurigo, 8 May 2019 34/23



CH is dismissed (by many) with arguments like (1999)

’More recently Gallavotti and Cohen have emphasized the
“nice” properties of Anosov systems. Rather than finding
realistic Anosov examples they have instead promoted their
“Chaotic Hypothesis”: if a system behaved “like” a [wildly
unphysical but well-understood] time reversible Anosov
system there would be simple and appealing consequences,
of exactly the kind mentioned above. Whether or not
speculations concerning such hypothetical Anosov systems
are an aid or a hindrance to understanding seems to be an
aesthetic question., [18].

Avoiding to comment on the statement I stress that
Statistical Mechanics, from Clausius, Boltzmann and
Maxwell has been a simple, surprising, consequence of the
“[wildly unphysical but well-understood]” periodicity
of the collective motions of 1019 gas molecules, [19].
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