
Ergodicity: an early paper by Boltzmann
and its relevance

The “second law”:
∮ dQ

T = 0 &
∮ dQ

T ≤ 0
In 1866 Boltzmann developed the idea that the second law
reflects a general property of Hamiltonian Mechanics, ⇒ hence
it becomes a “theorem”

The basic assumption, [1, Sec. IV,p.24], was:

”We shall now suppose that an atom, arbitrarily selected,
whatever is the state of the system, in a suitable time interval
(it does not matter if it is very long) of which t1 and t2 are the
initial and final instants, at the end of which the speeds and
directions return to the original value, describing a closed curve
and repeating, from these instants onward their motion.”

Fundamentally motions are periodic: ⇒ averages are then
simply evaluated by integration over the period, i.e. over the
phase.
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Let δx be the variation that motion t→ x(t) undergoes in

“a process in which actions and reactions are, during the entire
process, reciprocally equal so that in the body interior one finds
always thermal equilibrium or a stationary heat flux”[1].

The theorem then becomes a property of the variation
δ(K − V ), V = Vint + Vext. B. assumes Vext = 0 and
δQ = δU − δV ext is interpreted as heat received if
x→ x′ = x+ dx.
Taking Vext = 0 it follows, from the equations of motion

δQ

K
= 2 δ log(Ki)

def
= δS, i = period

Clausius criticizes Vext = 0, B. admits but says that the
argument would not change, Clausius says no ... Both agree
that the law is an expression of the “ minimal action principle”
which implies it as a theorem:
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”It is easily seen that our conclusion on the significance of the
quantities intervening here is totally independent from the
theory of heat, and therefore the second fundamental law is
related to theore of pure Mechanics to which it corresponds just
as the “live force principle corresponds to the first law; and, as
it follows immediately from oour considerations, it is related to
the a somewhat generalized form of the least action principle.”,
[1, #2,sec.IV]

““Generalization of the action principle” ???:

But the priority dispute, (1871), remained secondary, because of
the new developments by B.: in 1868 derived the canonical
distribution for the statisticcs of monomolecular atoms in
thermal equilibrium.

Considers first a very rarefied gas in which some molecules
(e.g.one) collide with the others and deducts their canonical
distribution. Then deduces the microcanonical for the entire
gas (seen as a giant molecule).
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Here for the first time phase space is imagined divided into cells
and the distribution is derived counting the number of ways to
put particles in the 6N -dimensional, cells of given total energy:
dynamics only enters because it is supposed that the systm
assumes periodically all possible configurations.

BUT in Sec.III also the rarefied gas hypotesis is removed and
the analysis becomes really general with and internal potential
energy χ(q) “arbitrary”.

Phase space of total energy nκ is divided into cells d3nqd3np
and for each dq ∈ R3n the allowed cells d3np (i.e. with
K = nκ− χ(q)) contain (literally although expressed in modern
notationn)

δ(nκ− 1
2p

2 − χ(q)) d3Nqd3Np

norm

→ microcanoninal distribution, e.g. (nκ− χ(q))
3n−2

2
d3nq
norm if

integrated over the p’s.
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The argument is combinatorial and dynamics intervenes only
because all ways of locating atoms in the cells are realized only
once every period cycle: ergodic hypothesis.

So Maxwell comments B. in one of his last papers, [3]:
”The only assumption which is necessary for the direct proof is
that the system, if left to itself in its actual state of motion,
will, sooner or later, pass through every phase which is
consistent with the equation of energy. Now it is manifest that
there are cases in which this does not take place
...
But if we suppose that the material particles, or some of them,
occasionally encounter a fixed obstacle such as the sides of a
vessel containing the particles, then, except for special forms of
the surface of this obstacle, each encounter will introduce a
disturbance into the motion of the system, so that it will pass
from one undisturbed path into another....”

A long time might be needed but eventually the cicloi will be
repeated.
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Therefore the most urgent problem of B. was to convince
skeptics (not yet in large number, 1868) that (generically) an
unperturbed motion would roam in phase space visiting all
points of equal energy: and of course by “all” one has to
understand it by keeping in mind a discrete phase space.

Boltzmann needed al least a simple example of motion which
would visit densely the accessible: i.e. a Hamiltonian system
with orbits covering densely the energy surface. It should be
stressed that B. considered that the equilibrium distribution
had a regular density, hence a distribution with regular density
on a dense set and in absence of other constants of motion had
to be microcanonical.

Under the modest title “Solution of a mechanical problem” [2]
(“Lösung eines mechanisches Problems”, 1868) considers a
point in motion under a gravitationsl potential − α

2r and a

centrifugal potential β
2r2

. The purpose is to build an example,
since this is “not really easy to find” (!).
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This is a Hamiltonian system, 2 degrees of freedom admitting
energy and angular momentum conserved, soluble via
elementary quadratures: all its motions are quasi-periodic aside
special cases (resonances). The Hamiltonian is

H =
1

2
p2 − α

2r
+

β

2r2

If the polar coordinates at time t are t→ (r(r), ϕ(t)) for a
motion with energy 1

2A < 0 and angular momentum a:

ϕ(t) = ϕ(0) + F (r(t), a, A)− F (0, a, A) ≡ ε+ F (r(t), a, A)

F (r, a,A) =
a√
a2 + β

arccos
( 2(a2 + β)/r − α√

α2 + 4A(a2 + β)

)
Likewise one can consider the case of a harmonic potential 1

2κr
2

and a centrifugal potential β
2r2

(Botlzmann did consider it
later):

H =
1

2
p2 +

κ

2
r2 +

β

2r2

also elemtarily integrable with all motions quasi periodic.
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Then Boltzmann immagines setting a barrier at height y:

.

r0
ϕ0

(a, ε)

and the particle, imagined above the obstacle, is reflected
elastically at each collision.
Angular momentum is no longer conserved and collisions take
place in a space with 2 dim. Convenient coordinates are (a, ϕ)
of successive collisions (Poincaré’ map). Or also (x, a) with
x = y tanϕ: so evolution is (x, a)→ (x′, a′).

The idea and conclusion of B.’s seems to have been that, given
the non conservation of the angular momentum, the formerly
quasi periodic motion will invade densely the energy surface;
(later this will be formalized as “quasi ergodic hypothesis”, by
the Ehrenfests).
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In detail B. proves the existence of an invariant density: this is
obtained via Liouville’s theorem (which in his works is derived
every time needed via explicit, often very long, calculations).

Then he assumes that the number of events (i.e. visits) in dadx
has the form

F (a, x)dadx

(we say that the probability of visit is absolutely continuous).

Concludes apparently taking for granted that F is continuous
on the enery surface, densely covered by the motion, as done
several times in subsequent (and preceding) works. And that
there are no other such invariant distributions.

Summary: B. already in the earlier works and in all susequent
ones supposed
1) motions err densely on the energy surface and
2) visit regions with a density F which is continuous
(3) Generically F is a function of the energy.
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Is this true here? doubt.
System is very simple and a simulation is possible: with results
somewhat surprising.
Left is the gravitation + centrifugal, right case is
harmonic+centrifugal, in the x, a coordinates:
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The dashed line encloses the energy surface, at collisions, Le
curves are two distinct equal energy trajectories

It seems not ....
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However parameters are y = 1 (obstacle quota), and β = .1
(centrifugal, rather small) and α = 1 (gravity). Ian Jauslin
instead took β larger (∼ 10 times) finding that notion invaded
an open region of the energy surface.
In the latter case B. seems right.

Why does B. introduce the centrifugal (or harmonic) force?
perhaps to make sure that in absence of the obstacle motions
were already quasi periodic? or because he suspected that
without centrifugal force motions still remained quasi periodic?

Studying the problem with β = 0 (no centrifugal f.) it appears
that the motions in the Poincaré plain (a, e or a, e) always run
on closed, hence not dense (except in resonant cases in which
they consist of a finite number of points).

Is it possible to formulate a theory of the descibed
phenomenology?

Yes (perhaps)
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Conjecture (B. ?)
In absence of centrifugal f. the system is integrable and
anisochronous for all y > 0. Trivial if y = 0.

If true it would reflect a nice property of conic sections: between
collisions the orbits form a family of conics (ellipses) 1

2 -confocal
and coaxial (i.e. a common focus and equal major axes).
Conjecture would imply that the collision points (x, a) are
located on closed curves in the x, α plain. Perhaps Apollonius
knew? Families of confocal conics share many geometrical
properties; if also coaxial have more but what about the
1
2 -confocal?

If conjecture is correct the shown figures would be consequences
of the KAM theorem (in Moser’s version) for β small: and the
observed chaos at large centrifugal β would belong to
theAubry-Mather theory.
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A property that emerges easily in simulations (discovered by
I.Jauslin) leads to the following theorem (G.-J.)’:
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Theorem 1: Let E be an ellipse with major semiaxis aM ,
aphelion inclination ϕ0 and focus in O: the ellipse center C is
at a distance R0 from Q depending only from cos(2λ) with λ the
angle formed by the tangent to E at the intersection with L and
L itself.
Zurigo 15/05/2019 12/13



Corollary:The angular momentum a, the aphelion angle ϕ0

and

R2
0 =

1

4
r20 +

1

4
(2aM − r0)2 +

1

2
r0(2aM − r0) cos(2λ0)

R =a20 + e0hα sinϕ0, e0 =

√
1 +

4Aa20
α2

(0.1)

with e = eccentricity e =
√

1 + 4Aa2

α2 , define a constant of

motion R0, which can also be written as R.

Hence, given the other constant energy, motion is represented
as a curve (i.e. R = const). The question is then which is the
angle conjugated to the constant R ?

There should exist an angle θ which at each collision advances
by a constant rotation ω.
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I. Jauslin has proposed that the angle could be simply the angle
variable of the Hamiltonian R with (a0, ϕ0) as conjugated
variables:

R = a20 + e0yα sinϕ0, e0 =

√
1 +

4Aa20
α2

where ϕ0 is the aphelion inclination over the x-axis of the
ellipse emerging from the collision x0 and e0 is its eccentricity,
R is the above expression of the constant of motion.
Apparently this Hamiltonian bears no relation with our
dynamics. Still it is integrable by quadrature. Let I, γ be its
action-angle variables with

I =

∫ 2π

0
aA,R(ψ)dψ, γ(ϕ0) = ∂R

∫ ϕ0

0
aA,R(ψ)dψ
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Let ϕ,ϕ′ the aphelions in 2 successive collisions and let θ(A,R)
be time btw collisions and τ(A,R) period in absence of coll.,
then

γ′ = γ + ω(A,R), ω(A,R) = 2π
θ(A,R)

τ(A,R)
Conjecture: ω(A,R) does not depend on the collisions if the
circle, on which the centers move, contains the focus,
furthermore ∂Rω(A,R) 6= 0.

If so I, γ appear as a pair of integrating coordinates. The
ω(A,R) can be expressed via elliptic integrals and its collision
independence would be a further identity between elliptic
integrals. Simulations apparently agree with the conjecture.

Conclusion: Boltzmann’s proposal that this could be a simple
example of chaotic system if β 6= 0 does not seem always
correct. But even if not correct his intuition about the
importance of the centrifugal force might be fundamentally
right and lead to a new integrable system with a chaotic
transition in presence of pertubations.
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If R < yα the circle of the centers of the ellipses is not covered
densely by the trajectory: motion is like a that of a pendulum.
In this case the I.J. formula does not seem to be valid.
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On the other hand the center C can also be determined from the
aphelion angle ϕ0 and a, e as

C = e aM (cosϕ0, sinϕ0)

so that (Cauchy’s th.) R2
0 = e2a2M + h2 − 2eaMh sinϕ0 is a constant

of motion as well as

R2
0 − h2 − a2M

aM
= (e2 − 1)aM − 2eh sinϕ0

(since aM and h are given constants).
Hence, by Kepler’s law “G2 = (1− e2)L2”, which in our notations

becomes a2 = (1− e2) α2

−4A :

Corollary: The angular momentum a, the aphelion angle ϕ0 and

R = a2 + hαe sinϕ0 ≡ −
α

2aM
(R2

0 − h2 − a2M )

where e is the eccentricity e =
√

1 + 4Aa2

α2 , define constants of motion

R,R0.



a2± = 2Ay2 +R±
√

4A2y4 + 4Ay2R+ α2y2

τ(A,R) = 2

∫ a+

a−

da√
α2y2 −R2 + (4Ay2 + 2R)a2 − a4

γ′ = γ + ω(A,R), ω(A,R) = 2π
θ(A,R)

τ(A,R)

time θ between collisio

θ =

∫ a0

a1

da√
(a2+ − a2)(a2 − a2−)


