
Viscosity, Reversibility, Statistical Ensembles (in a
Navier-Stokes fluid)

I. General introduction to “non equilibrium stationarity”

Equilibrium Physics theory is based on
(H1) the Ergodic Hypothesis, EH (i.e. initial data x
typically evolve covering a dense set in phase space), and
(H2) on taking for granted that the only invariant volume
is Liouville’s volume, [1, 2].

(H1)&(H2) are extremely powerful and lead to identify the
probability distributions (PDF) that give the averages of
macroscopic observables. The distributions
(synonim=”ensembles”) depend on a few parameters and
their collection describes completely the possible
equilibrium states of a given system.



The two assumptions can be criticized and their
inadequacy becomes manifest when trying to build a theory
of the stationary non equilibrium states.

A system in a stationary state is out of equilibrium if it
evolves under the action of non conservative forces whose
work is dissipated as heat ceded to external thermostats,
which might be phenomenologically realized via constraints
or dissipative forces, or ideally via infinite reservoirs.
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Examples are a gas enclosed in two counterrotating heat
conducting cylinders, a viscous incompressible fluid driven
by a (non conservative force), ... BUT:

(H1) certainly cannot hold, in general, when a system is
out of equilibrium as in such cases dissipation reduces the
part of phase space where the evolution can dwell, at least
if forcing is strong enough.

(H2) motions of most macroscopically relevant system are
chaotic, most initially close configuration evolve in time
diverging at exponential rate: i.e. motions are ”hyperbolic”.

However in chaotic systems there are ∞-many ways of
measuring the volume µ(∆) of phase space sets ∆: which
are invariant and therefore could ’claim’ to the
interpretation of frequency of visit to cells ∆.
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So the Liouville volume loses its privileged place: for lack of
uniqueness and because in general in chaotic systems
frequency of visit µ(∆) cannot even be supposed given by∫
∆
ρ(x)dx for some non constant density ρ.

Furthermore even in equilibrium Liouville’s volume is not
the only invariant volume and its special role is sometimes
ascribed to the fact that it is invariant:

a shaky argument because its metric invariance is
accompanied by “wild” deformation of the volumes shape.
Even the well established equilibrium ensembles have to be
explained anew.

DSFD Viterbo,Luglio 13 2020 3/28



The chaoticity of motions of systems of thermodyamic
interest (unexpectedly) proposes, from Ruelle’s work, an
answer to both problems, [3, 4].

(a) Any laboratory measurement is based on a “protocol
for the set up”: inevitably the protocol generates initial
states that have some randomness, which depends on the
protocol, in spite of attempts at avoiding uncertainty.

A basic assumption is that a given protocol generates data
which depend on several unkown quantities: nevertheless
all protocols designed to study a given system are supposed
to have some randomess expressible as a PDF which has a
density ρP (x): the density is not known but the
assumption is that it exists. Formally:
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(a) a protocol for an experiment (or simulation) on a
system produces intial data affected by a (usually very
small) uncertainty whose PDF has a density on phase
space.

(b) if the evolution is chaotic, which is generally the case in
the systems of interest for thermodynamics, then it is a
hyperbolic evolution. Formally:

In the vicinity of the attractor the evolution is hyperbolic.

In particular this applies when system is conservative.

Assumptions (a),(b) offer a solution to the above two key
problems which is provided by the properties of the
hyperbolic motions.



As in the theory of ordered motions we use the paradigm of
the harmonic oscillators (e.g. to model pendulum, elastic
chains and strings, rigid motion, integrable systems...),
likewise in the theory of chaotic motions the paradigm is
the hyperbolic motion, of which the simplest example are
the Anosov systems, which entered the scene of Physics in
the ’960’s.

Like the harmonic oscillators case, their properties are very
elementary although not really well known yet in the field,
see [5, p.219].
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In great generality the property of such systems is that if
the initial data x are chosen with a distribution ρ(x)dx
which has a density ρ on phase space, no matter which ρ is,
will evolve in time visiting, as t→∞, any number of
prefixed volume elements ∆ with a frequency µ(∆)

independent of ρ ! .

This remains true even when evolution is very dissipative
and motions approach an attractor not dense in phase
space.[6, 7, 8]

This gives the possibility of solving both problems (1) and
(2), including the cases of equilibrium.
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The property (b), chaos, and (a), unknown but
existent randomess of initial data, solves the problem
of the frequency µ(∆) of visit to sets ∆: uniquely, as a
theorem on chaotic evolution (i.e. hyperbolic ev.).

Hence in the case of conservative systems it identifies the
Liouville volume as the privileged volume measurement.

Therefore Liouville volume is not privileged because it
stands obviously out the wide variety of invariant volumes
that exist with “equal rights” as soon as the system
exhibits chaotic motions,

rather because the data have intrinsically some randomness
with a PDF (typically not invariant) but which has a
density ρP (x) (typically ρP (x) is concentrated on a very
small vicinity of what the protocol is designed for).
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The (a),(b) assumption therefore (via the simple hyperbolic
motions theory) assign a unique PDF determining the
statistical properties of the (few) observables of interest.

Hence, whether in equilibrium or in stationary non
equilibrium, the states of a system are identified with a well
determined collection of PDFs.

At this point new horizons open up, and the role of the
Liouville’s distribution is more clearly understood.

Equilibrium and non equilibrium statistical analysis have
been remarkably unified: given a system and an equation of
evolution for it the frequency of visit to cells ∆ is uniquely
determined.
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Furthermore different evolution equations for the same
system can lead to different PDF’s for the stationary state
which neverthesess assign the same average to the
thermodynamic observables.

Thus the existence of equivalent distributions and
equations, well known in equilibrium (canonical, grand
canonical, microcanonical ensembles ..) can be envisaged
for stationary non equilibrium description as part of a more
general theory of ensembles.

II. A special example of wide interest.

Consider the 2D Navier Stokes equation for an
incompressible fluid in a periodic container of side 2π.
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Velocity u(x) is expressed via a Fourier’s series:

u(x) =
∑

~06=k=(k1,k2)∈Z2

uke(k)e
−ik·x, e(k) · k = 0

with uk = u−k, k
⊥ = (k2,−k1), e(k) =

ik⊥

|k|
. Hence NS is

u̇k = E(u)k − νk2uk + fk, NSirr

E(u)k = −
∑

k1+k2=k

(k2
2 − k2

1) (k
⊥
1 · k2)

2|k1||k2||k|
uk1uk2,

the forcing will be taken s.t.
∑

k
|fk|

2 = 1 and fk = 0
except for |k| < K, so f is a “large scale force”, e.g. fk = 0
except for k = ±(2,−1). So there is only one parameter
ν ≡ 1

R
viscosity or Reynolds number.
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Incompressibility condition and viscosity play the role of
thermostats: they are phenomenological properties.

The first regulates the temperature (relating pressure,
temperature, density via the eq. of state) and the viscosity
controls the energy dissipation (proportional to the
“enstrophy”, D(u) =

∑
k
k2|uk|

2).

So we have a Euler fluid subject to phenomenological
constraints. And we can think of replacing one of them,
e.g. viscosity, with a different constraint which achieves the
same result of bounding the dissipation.

This, for instance, could be replacing “official NS eq.” by

u̇k = E(u)k − α(u)k2uk + fk NSrev

with viscosity ν replaced by a multiplier α(u) designed so
that enstrophy D(u) =

∑
k
|k|2|uk|

2 is exactly conserved.
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In the 2D case, this means that

α(u) =

∑
k
f
k
k2uk∑

k
k4|uk|2

In 3D the expression of α is a little more involved:
nevertheless all what will be said in the 2D case applies to
3D with the appropriate α(u).

Denote t→ Srev,N
t u = u(t) the evolution for the new eq.

and t→ Sirr,N
t u the evol. for the official NS eq.: where N is

a UV cut-off introduced to eliminate problems about
existence of solutions: (not arising in 2D unlike in 3D).

The equations above are to be understood by setting
uk = 0 if |ki| > N .
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N will have the role that the container volume V plays in
Statistical Mechanics, while the observables which depend
only on the modes uk with |k| < L, “large scale
observables”, play the role of the local observables in Stat.
Mech., which depend only on the particles located in a
volume L≪ V .

Of course we shall be interested in properties of large scale
observables which become N -independent as N →∞, just
as in the theory of the thermodynamic limit in SM.

The evolutions of the two equations are chaotic at least if R
is large and if the dissipation En is large.
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Actually both equations should be regarded as
phenomenological versions of a fundamental equation which
is the Hamiltonian microscopic equation: whose motions
are certainly chaotic and reversible.

Therefore given N and ν = 1
R
or the Enstrophy En, and

assuming (Ha),(Hb) above, we associate with each ν,N or
each En,N resp. the unique PDF µirr,N

R or µrev,N
En ,

stationary distribution implied by the hyperbolicity, i.e. by
chaos near the attractor.

The collection of the distributions represents all stationary
states of the two evolutions: and can be called the
irreversible ensembles or resp. the reversible ensembles at
cut-off N for the NS flow.
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The conjecture is (in 2D or 3D):

There is a 1− 1 correspondence between R and En such
that for all large scale observables, i.e. functions OL(u) of
the velocity field u depending only on uk with |k| < L, it is

lim
N→∞

µirr,N
R (OL) = lim

N→∞
µrev,N
En (OL)

and the correspondence is R←→En is defined by:

µirr,N
R (

∑
k

k2|uk|
2) = En

in complete analogy with the thermod. limit in SM.

An exact consequence,[9], hence a first test, is the relation;

lim
N→∞

µrev,N
En (α) = ν
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A test is (ν = 1
R
= 1/2048, N = 31, i.e. 3968 modes):
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Fig.1: time units 2/h with h = 2−14 RK4 integrator. Blue

fluctuations = time evolution of Rα(t) inreversible evol.

(NSrev); red line yields, at time t, “running average” Rα(t),

〈Rα(t) 〉 −−−→
t→∞

1. Reached within 10% amid fluctuations 150

times as large in a short run. Horizontal visual aid at height 1.
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Reversibility of NSrev suggests testing validity of
“Fluctuation Relation”, (FR). But new problems arise:

FR proposes a universal relation for the observable

p =
1

τ

∫ τ

0

σ(u(t))

σ+

dt, σ+ = 〈 σ(u(t)) 〉

where σ(u) = phase space contraction (i.e. “divergence”)

σ(u) =
∑
k

∂uk
(α(u)k2uk)

Namely probability density of p should obey “large
deviation rule” i.e. be ∝ eτs(p) for τ large, with

s(p)− s(−p) = τ p σ+, “FR′′

But evol. must be chaotic and time revers. on attractor.
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For R large motion is (empirically) chaotic.

However time reversal is not implied by the reversibility of
the equation: the attracting set A might fail to be dense on
phase space.

So its time reversal image might be disconnected from A
and the time reversal symmetry will be spontaneously
broken for motions on A (which, at stationarity, are the
only relevant).

This is a real problem at large N , as most uk might be
“damped away”: as indicated by considering the Lyapunov
exponents structure, illustrated by the following figure.
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Fig.5: Local Lyap. spectrum in 960 modes in NSrev and NSirr

flows at R = 2048, superposed. The n = 4N(N +1) exponents

λ0, . . . λn−1 are drawn reporting for each k = 0, . . . , kn

2
−1 the

λk, λn−1−k and 1
2(λk + λn−1−k) for each k = 0, . . . n2 − 1 Spectra

are averaged over 800 time units sampled every 4 (quite short):

before t = 800/h running average values become stable,

although the individual exponents are still fluctuating.

Overlap of Lyap. exp. for NSirr,N and NSrev,N indicates
possible equiv. extension to selected not large scale observ.
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warning 1 Is the “pairing” between λk, λn−1−k

approximately realized only in a range of R and N . Check?

warning 2 Are the global Lyap. exp. paired?

The above pairing (if confirmed for the global exp.) could
be interpreted, [10, 9, 11], to mean that the pairs of
negative exponents control the approach to the attracting
set: so that do not contribute to the σ(t).

Thus the simplest is to study cases in which there is
approximate pairing and all pairs have opposite sign: so
that it can be supposed that the attracting set is dense and
hyperbolic: then time reversal applies and FR should hold.

Coincidence of local exponents for rever. and irrever. evol.,
exhibited above, induces to test FR at least when d± = d,
which happens at low N .
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The local Lyapunov spectrum in a 7x7 truncation of NS:
with all pairs of opposite sign’:

�✁

�✂

�✄

�☎

✆

☎

✄

✂

✁

✆ ✝ ✞✆ ✞✝ ☎✆ ☎✝

✟✠✡✡✆�✆�☛☛☛✟

✟✠✡✡✞�✆�☛☛☛✟

Fig.2: Local Lyapunov spectra for both NSirr and NSrev flows
with d = 48 modes, R = 2048. Rapid computation with only
1000 samples taken every 4/h time steps of time h = 2−13 and
averaged: the values give the d/2 exponents λk, the λd−1−k, and
1
2(λk + λd−1−k); it shows the approximate pairing and the equal
number of non negative and negative exp.
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Therefore, at least in this case the attracting set appears to be
whole phase space and FR should hold for the reversible case.

Lyap. spectra equivalence of NSrev and NSirr is not part of
the conjecture: hence it is worth testing the FR also in the
NSirr: where it certainly cannot be, a priori, applied because
evolution is irreversible.

However phase space volume contraction for reversible ev. is an
observable also for irrev. evolution:

σrev(u) =
∑
k

∂uk
(α(u)k2uk)

and is natural to ask whether equivalence (already surprising
for the Lyap. exp.) extends to the fluctuation of σrev(u) viewed
as observable for NSirr.

Possibility of FR for σrev(u) has been discussed in earlier works
and here I do not try to justify why the result, described in the
following Fig., below was expected.
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Fig.4: The PDF for FR in NSirr, red, with 48 modes,
R = 2048. The τ is chosen 8, the slope of the graph increases
with τ reaching 1 at about τ ∼ 2. The graph is derived from
registering the flow every 8/h time steps of size h = 2−13. The
blue line f(x) = x is a visual aid. The corresponding reversible
FR essentially overlaps with the above.

DSFD Viterbo,Luglio 13 2020 23/28



�

�✁✂

�✁✄

�✁☎

�✁✆

✝

✝✁✂

✞✄ ✞✂ � ✂ ✄ ☎

✟✠✡�✞�✞✝������✁✆☛☞��☛✆✟

✟✠✡�✞�✞✝������✁✆☛☞��☛✆✟ ✌✍✌✎✏ ☞

✑✒✓✔

.
A

Fig.4: Test FR in NSirr, red, with 48 modes (7× 7), R = 2048.
The τ is chosen 8, the slope of the graph increases with τ
reaching 1 at about τ 2. The graph is built with 106 data,
divided into 500 bins, obtained sampling the flow every 8/h
time steps of size h = 2−13. The blue line f(x) = e−a(x−b)2

fitted via a, b, normalized to 1. The corresponding reversible FR
essentially overlaps with the above.
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III. What about larger N?, and other comments

The case with 224 modes (15 × 15), from Lyap. spectrum and
pairing, would still yield a slope deviation from 1 by ∼ 2%
assuming that local Ly. exp. coincide with the true exp. (which
is not expected) and would be very difficult to distinguish from
the errors.

The case with 960 modes(31× 31) should show a deviation of at
least 20%: however the computer time is for the moment too
long, already for studying the local Lyapunov exponents.

This is unfortunate since already in [9, 11] a scenario, in the
frame of the Chaotic Hypothesis, has been proposed to test the
FR in strongly dissipative irrever. evol. The scenario has many
items that need to be tested and cannot be presented here.



Finally a question asked often is: why to change NS equation to
study another (particularly if equivalent).

(1) for the same reason why in equil. several ensembles are
considered, although equivalent: and studying equivalence led
to better understanding about phase transitions, long range
forces, finite size effects, scaling properties...

Other comments;

(2) the NS equation is phenomenological: viscosity is not a
property of molecules (which evolve via reversible eq.). It is
questioned whether in 3D Obuk.Kol. scaling theory remains
among the predictions of the rev. NS equation. This problem
(open) might also shed light on the statistical properties
dwelling above the Kolmogorov scale.
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(3) in 3D NSirr might have no regular solution and even no
constructive solution at all for mildly general initial data.
NSrev has no mathematical problems: but the princple of
difficulties conservation operates. By its dire action the
multiplier α can become < 0, eliminating hope to control limit
N →∞. The advantage is that the limit needs not exist as the
conjecture refers only to observables of large scale.

(4) negative fluctuations for α signal a regime of high
turbulence: it is in this regime that it would be very interesting
to test statistics at scales behind Kolm. scale.
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Fig.6: 960 modes (31 × 31), R=2048, 4 identical movie frames
periodically repeated for visual aid; with 4 vortices each.
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Fig.7: 217-Local Ly.Ex. for 224 modes (15× 15): R=2048. The
red curves are the loci of the largest and mallest L.E. in 8000
shots of the velocity field in NSrev. The blue curves are the
same for NSirr. The central violet line is the graphs of L.E. of
BOTH, superposed i.e. ’coinciding’ on the graph scale.

The difference |λrev
k − λirr

k | is reported in the Fig.8

T DSFD Viterbo,Luglio 13 2020 28/28



�

�✁✂

�✁✄

�✁☎

�✁✆

�✁✝

�✁✞

�✁✟

� ✝� ✂�� ✂✝� ✄�� ✄✝�

✠✡�✂☛✞���☛✂✆���✠ ☞ ✂✌☎

✠✡�✂☛✞���☛✂✆���✠ ☞ ✂✌☎

✁�✝

Fig. 8: the difference 2
|λrev
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−λirr
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|λrev
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|
between corresponding L.E.

for NSrev and NSirr. The green line interpolates the actual
values represented by the dots, and the bar marks the .05 level.
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Fig.9: Evidence (?) for the Chaotic hypothesis: Fluctuation

Relation, for x = pσ+τ , i.e.
logPτ (x)−log Pτ (−x)

x
= const. Green

data are for NSrev, red data for the NSirr; the straight lines,
yellow and blue, are the best fit to a constant.

FR holds but the value of the constant, if equivalence for σ
agree in the average and if pairing holds, should be n+

n
,

n+ = 2∗number of L.E. > 0, n = a total number of L.E. This is
correct only up to ∼ 20%, hence not OK ⇒ why?



Question: the integration is done at low precision (due to
run-time length) and the experiment should be repeated at
higher precision. Here the divergence is recorded every 2 time
unit (i.e. 2δt−1 = 2 ∗ 213) up to t ≃ 1.56 105 (t = 27 ∗ 128 = 214).

Or, simply, σ is not a local observable and might not be covered
by equivalence: just as the L.E. case which agree in average but
exhibit different fluctuations.
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