
A path from equilibrium to nonequilibrium
thermodynamics

Personne n’ignore que la chaleur peut être la cause du
mouvement, qu’elle possède même une grande puissance
motrice: les machines à vapeur, aujourd’hui si répandues,
en sont une preuve parlant à tous les yeux.

On the basis of properties of rarefied gases (e.g.
Boyle-Mariotte’s law) Carnot develops, [1], his theorem on
the ideal efficiency of machines operating by extracting or
damping heat in two reservoirs and converting it into work.



The theorem shows that the most efficient machines must
operate running in a reversible cycle in which vapor of
water, air, alcohol or other liquid or solid materials, evolves
through a sequence P of equilibrium states.
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Reversible transformations were essential in Carnot’s
analysis, and he carefully insists to clarify the subtle
argument that permits to avoid regarding their definition,
requiring for instance a difference in temperature which
“can be considered as vanishing”, an oxymoron:

“À la vérité, les choses ne peuvent pas se passer
rigoureusement comme nons l’avons supposé ...,” [1,
p.13-14].



A few years later Krönig, [2], established proportionality of
absolute temperature to average kinetic energy and
Clausius, [3], wrote the first of the works leading to
entropy, 1850, whose existence constitutes the second law of
thermodynamics and is implied by Carnot’s theorem.

If through a “path” P a system reversibly evolves from
state A to state B via successive equilibria then the the
entropy variation is SB − SA =

∫
P

dQ

T

dQ being the amount of heat received while in contact with
a heat reservoir at absolute temperature T , whatever the
reversible path P is. This allows to set the value of the
entropy of a generic equilibrium state, determining it up to
an additive constant.
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Entropy is important also in irreversible processes I: by
Clausius, in such a process SB − SA ≥

∫
I

dQ

T
.

But matter is constituted by atoms subject to mechanical
laws: therefore the question arises which is the mechanical
interpretation of entropy ?, hence of thermodynamics.

In 1866 Boltzmann, [4], proposed to link it to the purely
mechanical Maupertuis’s Action Principle, imagining atoms
moving on a single periodic orbit spanning all phase space
points compatible with mechanical conservation laws.
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The continuous use of the second law, hence of Carnot’s
theorem, led to harsh debates on ergodic hypothesis, on
entropy, and on resolution of the antinomy reversible
microscopic dynamics – irreversible macroscopic evolutions,
which in some respects is still going on.

It cannot be denied that in a adiabatic expansion of a gas
(even perfect) the gas will settle on a new equilibrium: the
entropy variation is easily computed to be strictly
>

∮
dQ

T
= 0. So the gas evolves via a reversible dynamics to

a state from which it cannot return: an apparent paradox.



Boltzmann and Thomson clearly pointed out the need to
consider the time scale for the return, under the impossible
invariability of the conditions of the experiment for a time
far longer than time elapsed since birth of Universe. And it
can be said that the problem is no longer considered one.

Attention evolved to inquire about the possibility of
extending thermodynamics to cover phenomena which seem
natural generalizations of the equilibria. Namely:

Phenomena in which external forces drive systems which,
being in contact with thermostats, evolve towards a
stationary state which is not an equilibrium state (because
work of external forces is dissipated into the thermostats).
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The question is then: is it possible to associate with each
stationary state of a system quantities like ‘‘energy”,
“pressure”, “temperature”, “entropy” ... among which exist
general relations, possibly simple and universal, as it is the
case if attention is restricted to equilibrium states.

A major step has been “Onsager’s reciprocity”, OR, of
transport coefficients. It led to extending thermodynamics
to the new stationary phenomena: with the OR being the
first new universal, system independent relations.
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However OR concern quantities expressing initial deviation
from equilibrium (i.e. derivatives with respect to forcings
evaluated at zero value): one would like to see what
happens under more general situations, i.e. reach generality
and universality comparable to that of equilibrium
thermodynamics.

The modern approach has been to rely on Statistical
Mechanics: in a way giving up the idea of building a theory
of non equilibrium phenomena on purely macroscopic
grounds, even though srestricted to stationary states.



Statistical Mechanics of equilibrium therm. is based on the
theory of ensembles. To each equilibrium state is associated
a probability distribution (Synonim=”ensemble”) on phase
space (of huge dimension) yielding the average in time of
the few interesting observables (pressure, density, energy,
temperature,...) far from all!; and even entropy admits an
expression in terms of the equil. probability distribution.
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Is it possible to build a similar theory of ensembles, i.e. of
families of PDF’s depending on the macroscopic parameters
determining the (properties of) stationary states of a
system? There are key difficulties:

(1) the connection Thermodynamics-Statistical Mechanics
is via the ergodic hypothesis (motion visits a dense set on
phase space)

(2) and in equil. there is only one,[5, 6] or few (as at phase
transitions) “reasonable” PDF on phase space which is
invariant, i.e. does not change in time so that it can
describe the frequencies of visit to phase space cells ∆ in an
equilibrium state.



Assumption (1) which can be accepted in equilibrium
certainly cannot in non equilibrium: simply because the
presence of driving and the corresponding dissipation imply
that at stationarity only a subset of the a priori available
(i.e. compatible with the contraints and conservation laws)
phase space, at least under strong forcing (where OR fails).

Assunption (2) relies on Liouville’s theorem: i.e. that the
evolution transforms BUT strongly deforms a volume
element in phase space without changing its volume.
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However it has become very clear that the Liouville volume
is not, by any means, the only way of measuring the
volumes ∆ which is invariant under the mechanical
evolution, i.e. suitable to be interpreted as frequency of
visit to ∆.

Therefore the often invoked argument that the
microcanonical ensemble is privileged fails. And the
problem remains even for the equilibria, hence for the
microscopic interpretation of thermodynamics.

A solution, essentially due to Ruelle, [7, 8], answers the
above two questions. And relies on the properties of chaotic
motions.

A motion is chaotic if most pairs of close initial data
separate at an exponential rate.
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As in the theory of ordered motions we use the paradigm of
the harmonic oscillators (like to model pendulum, elastic
chains and strings, integrable systems...), likewise in the
theory of chaotic motions the paradigm is the hyperbolic
motion, of which the simplest example are the Anosov
systems, which entered the scene of Physics in the ’960’s.
Like the harmonic oscillators case, their properties are very
elementary although not really well known yet in the field.



In great generality the property of such systems is that if
the initial data x are chosen with a distribution ρ(x)dx
which has a density ρ on phase space, no matter which ρ is,
will evolve in time visiting, as t → ∞, any number of
prefixed volume elements ∆ with a frequency µ(∆)
independent of ρ. This remains true even when evolution is
very dissipative and motions approach an attractor not
dense in phase space.

This gives the possibility of solving both problems (1) and
(2) including the case of equilibria.
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(a) Any laboratory measurement is based on a “protocol
for the set up”: inevitably the protocol generates initial
states that have some randomness, which depends on the
protocol, in spite of attempts at avoiding uncertainty.

The basic assumption is that a given protocol generates
data which depend on several unkown quantities:
nevertheless all protocols designed to study a given system
are supposed to have some randomess expressible as a PDF
which has a density ρP (x): the density is not known but
the assumption is that it exists. Formally:

a protocol for an experiment on a system produces intial
data affected by a (usually very small) uncertainty whose
PDF has a density on phase space.
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(b) if the evolution is chaotic, which is generally the case in
the systems of interest for thermodynamics, then it is a
hyperbolic evolution. Formally:

In the vicinity of the attractor the evolution is hyperbolic.

In particular this applies when system is conservative.

The property (b), chaos, and (a), unknown but
existent randomess of initial data, solves the problem
of the frequency µ(∆) of visit to sets ∆: uniquely, as a
theorem on chaotic evolution (i.e. hyperbolic). And in the
case of conservative systems it identifies the Liouville
volume as the privileged volume measurement.
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The Liouville volume is not privileged because it stands
obviously out the wide variety of invariant volumes that
exist (with “equal rights”) as soon as the system exhibits
chaotic motions,
rather because the data have intrinsically some randomness
with a PDF (typically not invariant) but which has a
density ρ(x) (typically ρ(x) is concentrated on a very small
vicinity of what the protocol is designed for).



The (a),(b) assumption therefore (via the simple hyperbolic
motions theory) assign a unique PDF determining the
statistical properties of the (few) observables of interest:
hence, whether in equilibrium or in stationary non
equilibrium, the states of a system are identified with a well
determined collection of PDFs.
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This is well known to happen in equilibrium where
elements of canonical, microcanonical, grand canononical
ensembles can be put in correspondence so that
corresponding PDFs assign the same distribution to the
values of the (few) observables of interest.

Just as in equilibrium it is possible that for macroscopic
systems the same stationary states can be described by
different PDF’s, which however assign the same distribution
to the values of the (few) observables of interest: hence we
see the possibility of occurrence of several “ensembles” and
a corresponding theory of their equivalence.

The question is then whether the above general views can
be subject to tests.



Starting in the ’980s there have been many tests on the
chaotic evolutions in systems with statistical mechanics
relevance although not rarely the A have made clear, at
least implicitly, that they were not following the ideas
(a),(b). Still the results presented were actually confirming
the view.
Among the results have been the
(1) extension of the Green-Kubo formula, by Ruelle,
(2) and its applications to Atmospheric phenomena, [9]
(3) a very large number of simulations at small as well as
large forcings
(4) the development of distinct ensembles to represent the
same phenomena. In particular it has become clear that
the different equations of motion can describe the same
macroscopic evolutions

MASS,24 June 2020 13/14



(5) For reversible evolutions the fluctuations of the entropy
production over a time τ have been shown to obey a
universal law (the “fluctuation theorm”) which can e
regarded as a generalization of OR
(6) the existence of dissipation has been shown to be
interpretable, in some cases, as a spontaneous symmetry
breaking opening, posssibly, the way to the extension of the
fluctuation theorems to irreversible evolutions, [10]
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Finally a key question is whether it is possible to define a
state function which extends to non stationary equilibria
the notion of entropy. There is debate on the question
because the formula S = k logW does not have an obvious
extension to nonequilibrium steady states: W = Liouville
volume of phase space invaded by evolution of generic
initial datum.

But out of equilibrium the frequency µ(∆) of visit to a
volume ∆ is in general not expressed by the Liouville
volume nor by an integral over ∆ of a not constant density.

The question is too much under debate and it is better to
leave it as a problem here (or for discussion in a different
talk), [11].
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