
Navier-Stokes equation:
how relevant the existence-uniqueness problem?

Fluid flows easily reach very large Reynolds numbers and in
a container of size L viscosity starts to strongly affecting
the flow at the Kolmogorov scale ℓK = LR− 3

4 .

water at R = 104, L = 6.m : lK = 6. mm

air at R = 1012, L = 30.103m : lK = 30.µm

repectively at ∼onset of turbulence or in a ∼cyclone eye of
radius 30.km

Here the ’simplest’ problem of the properties of a stationary
state of an incompressible fluid in a periodic box of side
L = 2π and subject to a ’large scale’ force f is considered.
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The equations of motion for a velocity u(x) represented as:

u(x) =
∑

k,c=1,2

uc
k i e

c(k)e−ik·x,

with ec(k) = −ec(−k), k · ec(k) = 0 and uc
k = uc

−k are:

u̇(x) = −(u
˜
(x) · ∂

˜
)u(x)− ν∆u(x)− ∂p(x) + f(x)

∂ · u(x) = 0

and f(x) =
∑

|k|≤kmax
f c
k i e

c(k)e−ik·x: hence the constraint

|k| ≤ kmax indicates that forcing occurs a large scale.

It is ’widely accepted’, [?], that ℓK gives the order of the
length scale below which energy, input at large scale, is
transfered to be dissipated by the viscosity action.
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A theory of NS stationary states should therefore predict at
least the averages of observables O(x) whose Fourier’s
transform Ok vanishes for |k| > c ℓ−1

K , for some c = O(1).

And, if NS equation is considered correct, the latter
prediction should concern all local observables, i.e. all O’s
whose Fourier’s tranform vanishes except for finitely many
harmonics: named local observables.

At this point a difficulty cannot be avoided: given any
smooth initial datum u0(x) there is no guarantee that there
is a solution of the NS ut initiating at u0: i.e. no
algorithm exists (so far ?) for constructing ut, see [1].

Hence a large part of research has been devoted to
properties of regularized NS equations: i.e. equations
modified so that a priori it can be guaranteed that the
u(x) evolves remaining smooth and admits an algorithm
permitting to construct (Stu)(x) = ut(x)
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An example of regularization is to consider the NS eq. as
equations for the harmonics uc

k, i.e.

u̇c
k = −

∑

k1+k2=k

a,b=1,2

T
a,b,c
k1,k2,k

ua
k1
ub
k2
− νk2uc

k + f c
k

where T
a,b,c
k1,k2,k

def
= (ea(k1) · k2)(e

b(k2) · ec(k)).

Then just set = 0 all ur
h with h = (h1, h2, h3) and

maxi |hi| > N .

This is an ODE, named INSN (Irreversible NS), on a
DN = 2((2N + 1)3 − 1)-dimensional phase space, with only
one parameter, namely ν, f is fixed once and for all (with
||f ||2 = 1, say, and on large scale (fk = 0, |k| > kmax)).
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A rather general property of ODE’s generating “chaotic
motions” is to admit unique SRB-distributions µN

ν , i.e. such
that, aside from a zero volume set of data u, the averages of
all observables O are µN

ν (O), then the stationary properties
of the INSN evolution are completely determined, [2, 3, 4].

Or more generally a finite number of distributions which
control the averages of the observables.

To proceed consider viscosities ν (for simplicity) for which
there is a unique SRB distribution µN

ν for INSN .

Of course the basic existence problem arisen above has not
disappeared: the interest, if the NS equations are taken as
fundamental, is entirely resting on the limits as N →∞ of
the local observables averages.

However a similitude with Statistical Mechanics
(SM) becomes manifest.
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The cut-off N can be seen ’corresponding’ to the volume V

enclosing the rV hard core particles (say) of a gas of
density r not subject to other external forces.

Its (Hamiltonian) eqs. of motion are ODE’s that can be
seen as a regularization of the eqs. that would control
motion of an ∞ gas (of density r, filling the Universe !).

SM fared very well in absence of
existence-uniqueness results for the evolution of the
∞-system because the physicists’ attitude has been:

(1) find, or select, for finite V , a family of stationary
distrib. µV , and use them to define by µV (O) the averages
of physically interesting observ.s (namely the “local”
observ.s O, whose value depends only on positions and
velocities of particles located in a V -independent region

inside the confining V , [5]).
Lincei, May 27, 2022 6/25



(2) show limV→∞ µV (O) = 〈O 〉 to exist for all “local” O,

(3) exhibit general constraints between the average values

In SM item (1) is easy if the ergodic hypothesis is accepted,
because it allows restricting consideration to stationary
µV ’s that are uniform on constant energy surfaces, [6].

Item (2) has been at the center of the study of the
“thermodynamic limit”, leading to the proofs that, in a
very large number of models, the limit exists for all local
observables, [5, 7].

Item (3) led to the great achievement of showing, in
important models, that varying the systems parameters the
the averages invariably change in agreement with the
variations forseen by the laws of thermodynamics, provided
V is large enough, [5, 8].
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It had also become soon clear, [9], that, besides the uniform
distr. on energy surfaces, other collections of distrib.s
could be used to describe the stationary states of
the same system.

The story of SM and the difficulties encountered in the NS

equation may be seen to share common features.

The volume cut-off V can be considered ıanalogous to the
regularization cut-off N for the NS equation.

Role of “local” observables being played in SM by O(u)’s
depending only on finitely many Fourier modes: “locality in

fluids is locality in Fourier modes while in SM locality is in

position space”. In stationary states of fluids interest is on
averages of local observables (i.e. on large scale properties
of the velocity fields), identified by the distribution µN

ν of
their values followed over time.
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The ergodic hypothesis rests on the chaotic nature of the
particles motion: it states that all initial data, aside from a

set of zero volume in phase space, will yield motions with
the same statistical properties (or present a finite number
of possibilities, as at phase transitions, [10]) at large V .

The unif. distr, on energy surface can be regarded as a
SRB distribution: so in the cahotic evolution of INSN the
SRB distribution is selected uniquely to describe
the statistics of the fluid. Solving the major problem of
identifying the distr. that gives the statistical prop.s of a
flow (exceptions allowed as in SM, e.g. harmonic chains)

The assumption is inherited from the microscopic motion of
the fluid molecules, even in the cases in which the fluid fow
is periodic (e.g. if viscosity is large) as the fluid equations
are derived via scaling limits, without change of the eq.
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The just sorted analogy leads to define: viscosity ensemble

≡ collection for ν > 0 of SRB stationary distributions µN
ν

for the INSN equation.

For each ν > 0 the distr. µN
ν assigns the average

µN
ν (O) = 〈O 〉Nν of any local observ. O on a flow with

initial data randomly selected with a distrib. with a
continuous density δ(u) with respect to the volume in the
DN -dimensional phase space.

As in the corresponding SM case the microcanonical
distribution µV

E(dpdq), for a system of particles of total
energy E enclosed in a volume V , assigns the average value
µV
E(O) = 〈O 〉VE to any local observable.
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And, still following SM, we call state with viscosity ν the
distribution µN

ν ; and viscosity ensemble the collection, as ν
varies, ENviscosity of all the such distributions.

Knowledge of µN
ν gives a complete description of the

statistical properties of all local observables.

At this point we can ask whether it is possible to define
other collections EN of stationary distributions λN

γ which,

depending on a parameter γ, will assign averages 〈O 〉Nγ =
so that a correspondence ν←→γ can be established in
the form γ = gN(ν) implying:

lim
N→∞

µN
ν(O) = lim

N→∞
λN
γ(O) if γ = gN(ν)

Then we shall say that the ensembles ENviscosity and EN are
equivalent in the N →∞ limit.
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Just as we say that the microcanonical ensemble distr.s µV
E

are equivalent to the canonical ones λV

β in the limit as

V →∞ provided β and E are suitably related, [7].

Since viscosity describes an average over chaotic
microscopic motions it is conceivable that the viscosity
could be replaced by another term subject to rapid
fluctuations with average ν, while properties of large scale
observables (i.e. the local ones) will be neglegibly affected.

The possibility of describing the same system with different
equations which become equivalent for practical purposes
(and even rigorously in suitable limits) for a vast class of
observables is familiar in SM: an example is the equivalence
between the microcanonical and the isokinetic
ensembles.

In mathematics this would be located in the familiar frame
of PDE’s “homogeneization” phenomena.
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Consider a system of N = rV mass m = 1 particles in a
cubic vessel V , interacting, with the walls and reciprocally,
via repulsive short range potential ϕ(q). The equations:

q̇ =p, ṗ = −∂qϕ(q), Hamiltonian or

q̇ =p, ṗ = −∂qϕ(q)− α(q,p)p isokinetic

where the multiplier α is so defined that the second
equation admits the total kinetic energy 1

2
p2 exactly

constant. A brief calculation yields the value of α:

α(q,p) = −
p · ∂qϕ(q)

p2

Stationary states of the first eq. are microcanonical distr.s

µV
ε (dpdq) =

1

Zε,V

δ(
p2

2
+ ϕ(q)− εN ) dpdq

Lincei, May 27, 2022 13/25



while stationary distributions for the second are:

λV
β (dpdq) = Z−1

β,V δ(
p2

2
−

3

2
β−1N )dpdq

The first is well known, while the second can be checked
directly, [11]. Then it can be shown, in absence of phase
transitions, that local observables O verify

lim
V→∞

µV
ε (O) = lim

V→∞
λV
β (O)

under the “equivalence condition” µV
ε (

1

2
p2) = 3

2
β−1N .

Since 1980’s different equations are used describing the
same system and yielding same averages to interesting
observables (at least approximately: complete equivalence
could only be in limit situations, not really accessible).
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Vast literature on numerical simulations on nonequilibrium,
[11, 12, 13] provides many examples.

Different equations for the same system were usually
obtained by adding to the equations new terms so designed
to turn one, or more, selected (typically non-local)
observable into a constant of motion.

The extra terms have been often interpreted as simulating
the action of “thermostats”: such are the “Nosè-Hoover”
thermostats, [14], or the “Gaussian” thermostats, [15]. It is
even possible to impose simultaneously many extra terms:
a most remarkable case in [16].

In general the selection of the observables which, via the
modification of equations, must remain constant is
addressed towards quantities that are expected to have
small fluctuations in a limit situation of interest, like the
total kinetic energy in the above example.
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For instance in the case of [16] the NS equation is replaced
by ’thermostats’ (i.e. extra terms) imposing that the energy
of several shells above the Kolmogorov length scale (where
friction is believed to have little effect) is constrained to
keep the value predicted by the Kolmogorov law, [16].

Coming back to the NS equations

u̇c
k = −

∑

k1+k2=k

a,b=1,2

T
a,b,c
k1,k2,k

ua
k1
ub
k2
− νk2uc

k + f c
k

It has been proposed, [17, 18, 19], to change the viscosity ν

into a multiplier α so defined that the resulting evolution
keeps the enstrophy D(u) =

∑
k
k2u2

k constant. This is
obtained by defining:

α(u) =

∑
c

∑
k(−n

c
k(u)k

2uc
k + k2f c

ku
c
k)∑

c

∑
k k

4|uc
k|

2
(∗ : RNSN)

where nc
k(u) is the non-linear term in the eq.
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The R in the name RNS stands to stress that the equation

RNSN is time reversible, unlike the irreversible INSN .

Or it is possible to fix α so that the energy
E(u) =

∑
c

∑
k |u

c
k|

2 is exactly constant, which leads to a
much simpler multiplier α:

α(u) =

∑
c

∑
k f

c
ku

c
k∑

c

∑
k k

2|uc
k|

2
(∗∗ : ENSN ))

studied in [20].

Physical interpr.: thermostats are forces with the effect
of removing heat generated by the forcing. In the case of an
incompressible fluid above heat has to be taken away (in
either the enstrophy thermostat or in the energy
thermostat) to maintain the relation between pressure and
temperature at constant density prescribed by th equation
of state.
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The stationary distributions for the equation, referred as
RNSN , with α in (*) are parameterized by the enstrophy
value D as λN

D and their collection will be called
“enstrophy ensemble”, ENenstrophy.

Likewise the stationary distributions for the equation,
referred as ENSN , with α in (**) are parameterized by the
value E as θNE and form the “energy ensemble” ENenergy.

Given viscosity ν suppose, for simplicity, that there is only
one stationary distribution µN

ν ∈ E
N
viscosity for all N large:

Conjecture: Let D = µN
ν (D) be the average enstrophy.

Then also the distribution λN
D ∈ E

N
enstrophy is unique. The

distributions µN
ν , λ

N
D are equivalent in the sense

lim
N→∞

µN
ν (O) = lim

N→∞
λN
D(O) (@)
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In other words the viscosity ensemble and the enstrophy
ensembles are equivalent in the limit N →∞ provided
their entrophies agree, if the stationary distr. is unique.

More generally the conjecture is interpreted as saying that
the SRB distributions for the INSN equation can be put in
one-to-one correspondence with the distributions for the
RNSN equation with the same enstrophy so that for
corresponding distributions @ holds.

For a first test remark a non trivial consequence: namely if
both sides of INSN or RNSNare multipled by uc

k and
summed over c,k one finds, respectively:

d

dt
E(u) = −νD(u) + f · u,

d

dt
E(u) = −α(u)D + f · u

(no non-linear terms: energy conservation for f = ~0, ν = 0).
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Since the equivalence condition is 〈 D 〉Nν = D and O = f · u
is a local observable it follows that the averages 〈 f · u 〉
must be equal in the limit N →∞ and therefore

ν = lim
N→∞

〈α 〉ND

because the averages of d
dt
E(u) must vanish.

There are already a few numerical tests of the equivalence
of the ensembles INSN and RNSN for the 2D fluid
evolution, [17, 18, 18], and for the 3D fluid [21, 19].

For the ENSN tests relevant for the conjecture have been
proposed in [20].
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1) The simple test of equivalence 〈α 〉ND −−−→N→∞
ν has been

performed in 2D and 3D: with positive results in all
published cases: see Fig.4 in [17] and Fig.1 in [22], Fig.4 in
[21], Fig.15a in [19].

2) The 2D tests have shown that in many cases equivalence
holds also for observables that are non local. Remarkable is
the observable α(u) studied as an observable for the INSN

equation. It turned out, with an exception in Fig.4 of [21],
that it also averages to ν while presenting smaller
fluctuations compared to the RNSN case, see [17] for 2D
case and Fig.16a in [19] for 3D;

3) The latter remark led to tests equivalence of other
typically non local observables). A few tests, only in 2D so
far, have been performed comparing, under the equivalence
condition, the spectra of the symmetric part J(u) of the

DN ×DN Jacobian matrix
∂u̇c

k

∂u̇b
h

def
= J(u)c,k;b,h.
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Such observables are related to the Lyapunov exponents,
[23, 24]. The result has been that essentially the eigenvalues
averaged over the flows agree if ordered in the same way
(e.g. in decreasing order): see Fig.7 in [22] and Fig.5 in [17].

Most remarkable is that, while the average of the
eigenvalues agree surprisingly well, the eigenvalues of the
J(u) reach equal averages, along the two evolutions, in
spite of much larger fluctuations in the RNSN evolution
compared to the INSN , see Fig.6 in [22].

4) The 3D tests are still somewhat preliminary: yet they
yield important informations. If the conjecture is correct it
is expected that in RNSN the fluctuating viscosity α

fluctuates considerably and events in which α < 0 occur.
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The reason is that otherwise it can be proved that D
being bounded (ν〈 D 〉 = ε is expected bounded, fixed f) it
would follow that the velocity u remains smooth with all
derivatives bounded uniformly in N , see [19, Appendix],
thus giving a new prespective to the question of existence
and regularity of the NS flows.

It is therefore surprising, at least if ν is so small that the
fluid is certainly in a turbulent regime, that for N large
velocity fields u(t) with α(u(t)) < 0 are not observed
(after a short transient time depending on the initial data)
in several experiments, [21, 19].

Question to be understood is whether events with α < 0
are not seen because they are rare events (which is my
expectation), so rare to be missed (when N is large) in time
series with too large time step and/or integration step. For
some evidence on this phenomenon, see Fig.15 in [19].
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5) The results in [19] suggest that the conjecture above is
too strong and might fail unless the definition of local
observable is deeply modified restricting the notion of local
observable, for the purpose of the conjecture.

As formulated above the only requirement for locality is
that O depends only on a finite number of harmonics uk:
hence it would be possible to claim equivalence for an
observable which depends on one Fourier component with
|k| > kν if N is large enough.

But from [19] it emerges that equivalence is not
verified in several such tests: a further condition
appears needed, i.e. that O depends only on the
components uk with |k| < c0kν for some constant c0 of
order 1. See “Conjecture 2” and Fig.11–13 in [19] which
suggest a value c0 ∼

1

8
. The evidence is not yet conclusive,

in my view, and needs more data to really exclude c0 =∞.
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6) Tests of the possibility of existence of several attractors
have shown that even in presence of Chaotic motions there
are cases in which multiple attractors can coexist showing
strong intermittency phenomena, see figure below.

7) The remark 4) suggests that the approach to the theory
of the NS equation based on searching for existence and
uniqueness in function spaces could be usefully extended to
equivalent equations: while not solving nor simplifying the
problem it can open new perspectives, just like introducing
new equilibrium ensembles does not solve basic
mathematical problems of SM but, actually, introduces new
ones overcompensated by the deeper understanding of
thermodynamics.
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Fig.15a in [19] 3D α
ν
and α > 0??
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