Statistical ensembles in fluid dynamics Incompressible NS equations on $[0, 2\pi]^d$ with periodic b.c., large scale forcing \mathbf{f} , UV cut-off N (eventually $\rightarrow \infty$) for $\mathbf{u}(\mathbf{x}) = \sum_{c=1}^{d-1} \sum_{|\mathbf{k}| \leq N} i \mathbf{e}^c(\mathbf{k}) u_{\mathbf{k}}^c e^{i\mathbf{k}\cdot\mathbf{x}}$ are:

 $\dot{u}_{\mathbf{k}}^{c} = \mathbf{n}(\mathbf{u}, \mathbf{u})_{\mathbf{k}}^{c} - \nu \mathbf{k}^{2} u_{\mathbf{k}}^{c} + \mathbf{f}_{\mathbf{k}}, \qquad \text{"INS}^{N} \text{ eqs."}$

 $(\mathbf{f}_{\mathbf{k}} = 0 \text{ for } |\mathbf{k}| > \overline{k} \text{ fixed all over, } ||\mathbf{f}|| = 1.)$

Call μ_{ν}^{N} the stationary prob. distributions (SRB). Their collection $\mathcal{E}_{viscosity}^{N}$ defines "viscosity ensemble"; Concentrate attention on the *local observables*: *i.e.* functions $O(\mathbf{u})$ depending only on finitely many $u_{\mathbf{k}}^{c}$. The random nature of the viscosity ν suggests that it can be replaced by an observable that fluctuates chaotically. Generating a new evolution but equivalent to it. Thus the following equation is proposed to generate an ensemble \mathcal{E}' equivalent to $\mathcal{E}_{viscosity}^N$:

$$\dot{u}_{\mathbf{k}}^{c} = \mathbf{n}(\mathbf{u}, \mathbf{u})_{\mathbf{k}}^{c} - \boldsymbol{\alpha}(\mathbf{u}) \, \mathbf{k}^{2} u_{\mathbf{k}}^{c} + \mathbf{f}_{\mathbf{k}}, \qquad \text{"RNS}^{N} \text{ eqs."}$$

where $\boldsymbol{\alpha}$ is such that $\mathcal{D} = \sum_{c,|\mathbf{k}| \leq N} \mathbf{k}^2 |u_{\mathbf{k}}^c|^2$, **enstrophy**, is an exact constant. $\boldsymbol{\alpha}(\mathbf{u})$ value is (by inspection)

$$\boldsymbol{\alpha}(\mathbf{u}) = \frac{\sum_{\mathbf{k},c} \left(\mathbf{n}(\mathbf{u},\mathbf{u})_{\mathbf{k}}^{c} \mathbf{k}^{2} \overline{u}_{\mathbf{k}}^{c} + \mathbf{f}_{\mathbf{k}}^{c} \mathbf{k}^{2} \overline{u}_{\mathbf{k}}^{c} \right)}{\sum_{\mathbf{k},c} \mathbf{k}^{4} |u_{\mathbf{k}}^{c}|^{2}}$$

The RNS^N eqs. stationary distr.s will be parameterized by the value of the enstrophy D and denoted ρ_D^N .

Their collection forms "enstrophy ensemble", $\mathcal{E}_{enstrophy}$ RNS^N eqs is *reversible* and call α "reversible viscosity". Lincei, Oct 3, 2022 2/5 Recall enstrophy definition $\mathcal{D}(\mathbf{u}) \stackrel{def}{=} \sum \mathbf{k}^2 |u_{\mathbf{k}}^c|^2$

Conjecture: Let $\mu_{\nu}^{N}(O)$ and $\rho_{D}^{N}(O)$, O = local observable. If D is related to ν (and N) by

 $D = \mu_{\nu}^{N}(\mathcal{D})$

then for all local observables O it will be

$$\lim_{N \to \infty} \mu_{\nu}^{N}(O) = \lim_{N \to \infty} \rho_{D}^{N}(O),$$

INS and RNS equations are equivalent, on local obs., and on condition of equal enstrophy once UV cut of is removed.

Strict analogy with ensembles equivalence in SM: *e.g.* microcanonical ensemble and isokinetic ensemble are equivalent on condition of equal average kinetic energy (in Hamilton eqs.) and equal kinetic energy (in isokinetic eqs.) in the limit $V \to \infty$ on local observables). A rigorous consequence: equivalence condition implies

$$\lim_{N \to \infty} \rho_D^N(\alpha) = \nu, \qquad \left[\leftarrow W = \mathbf{F} \cdot \mathbf{u} \text{ is local O} \right]$$

So corresponding distributions equivalence implies "reversible viscosity" α has average ν : "homogeneization".

Homogeneisation tests by various groups. In **2D** up to $\sim 32^2 \sim 10^3$ harmonics $\mathbf{u_k}$, $\nu \sim 10^{-3}$ In **3D** up to $\sim 340^3 \sim 5 \cdot 10^7$ in d = 3 and ν in $(10^{-1}, 10^{-5})$.

In **3D** conjecture tests on several local $O(\mathbf{u})$'s confirm it but in a weaker form: it has been necessary to restrict to $O(\mathbf{u})$ localized on scales larger than a constant \mathbf{c} of order 1 times the Kolmogorov scale

$$K_{kolmogorov} = (\frac{D}{\nu^2})^{\frac{1}{4}} = (\frac{\eta}{\nu^3})^{\frac{1}{4}}$$

i.e. to $O(\mathbf{u})$'s only depending on $u_{\mathbf{k}}$ with $|\mathbf{k}| < cK_{kolmogorov}$.

Lincei, Oct 3, 2022

In my opinion a firm conclusion on $c < +\infty$ requires further simulations (larger N, finer integration step ...).

Open question/test is whether in the reversible evolution the multiplier α (with average ν) has a distribution which gives probability zero to **u**'s with $\alpha(\mathbf{u}) \leq 0$.

Important: if on the attractor $\alpha(\mathbf{u}) > \varepsilon > 0$ then enstrophy constancy would imply that the attractor consists of ∞ -smooth velocity fields.

So either α fluctuates below 0 or conjecture is likely false. From the simulations it seems that events with $\alpha < 0$ are possible even though very rare.

Conclusion: perhaps setting NS equations in a Sobolev space is not the only physically sensible option.

Lincei, Oct 3, 2022

See Appended References for

- 1) A first equivalence example: [1]
- 2) Path to the conjecture: [2, 3, 4, 5]
- 3) **3D enstrophy ensemble:** [5, 6]
- 4) **3D energy ensemble:** [7]
- 5) Shell model: [8]
- 7) **Stat-Mech:** [9, 10, 11, 12, 13]
- 8) **Turbulence physics:** [14, 15, 16, 17, 18]

See Appended Simulations Examples

Quoted references

- Z.S. She and E. Jackson. Constrained Euler system for Navier-Stokes turbulence. *Physical Review Letters*, 70:1255–1258, 1993.
- G. Gallavotti. Dynamical ensembles equivalence in fluid mechanics. *Physica D*, 105:163-184, 1997.
- G. Gallavotti.
 Reversible viscosity and Navier-Stokes fluids.
 Springer Proceedings in Mathematics & Statistics, 282:569-580, 2019.
- G. Gallavotti. Nonequilibrium and Fluctuation Relation. Journal of Statistical Physics, 180:1–55, 2020.
- [5] G. Margazoglu, L. Biferale, M. Cencini, G. Gallavotti, and V. Lucarini. Non-equilibrium Ensembles for the 3D Navier-Stokes Equations. *Physical Review E*, 105:065110, 2022.
- [6] A. Jaccod and S. Chibbaro. Constrained Reversible system for Navier-Stokes Turbulence. *Physical Review Letters*, 127:194501, 2021.
- [7] V. Shukla, B. Dubrulle, S. Nazarenko, G. Krstulovic, and S. Thalabard. Phase transition in time-reversible Navier-Stokes equations. *arxiv*, 1811:11503, 2018.
- [8] L. Biferale, M. Cencini, M. DePietro, G. Gallavotti, and V. Lucarini. Equivalence of non-equilibrium ensembles in turbulence models. *Physical Review E*, 98:012201, 2018.
- [9] D. Ruelle. Statistical Mechanics, Rigorus Results.

World Scientific, 3d edition, London, 1999.

[10] D. Ruelle.

Dynamical systems with turbulent behavior, volume 80 of Lecture Notes in Physics. Springer, 1977.

[11] D. Ruelle.

What are the measures describing turbulence.

Progress in Theoretical Physics Supplement, 64:339-345, 1978.

[12] D. Ruelle.

Chaotic motions and strange attractors. Accademia Nazionale dei Lincei, Cambridge University Press, Cambridge, 1989.

[13] D. Ruelle.

Hydrodynamic turbulence as a problem in nonequilibrium statistical mechanics. Proceedings of the National Academy of Science, 109:20344–20346, 2012.

U. Frisch. *Turbulence.* Cambridge University Press, 1995.

[15] R. Benzi and U. Frisch. Turbulence. Scholarpedia, 5(3):3439, 2010.

[16] W. George.

Lectures in Turbulence for the 21st Century. Lecture_Notes/Turbulence_Lille/TB_16January2013.pdf. https://www.turbulence-online.com/Publications/, Chalmers University of Technology, Gothenburg, Sweden, 2013.

[17] T. Buckmaster and V. Vicol.

Nonuniqueness of weak solutions to the Navier-Stokes equation. Annals of Mathematics, 189:101-144, 2019.

[18] C. Fefferman.

 $Existence \ {\mathcal C} \ smoothness \ of \ the \ Navier-Stokes \ equation.$

The millennium prize problems. Clay Mathematics Institute, Cambridge, MA, 2000.

[19] G. Gallavotti. Ensembles, Turbulence and Fluctuation Theorem. European Physics Journal, E, 43:37, 2020.

Lincei, May 27, 2022

26/5

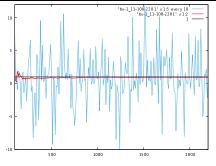


Fig.1 in [19] **2D**: $h = 2^{-14}$, R = 2048, N = 31, 3968 modes. Data of $\frac{\alpha(\mathbf{u}(t))}{\nu}$ (blue fluctuations) are registered at multiples of h^{-1} by 4: the plot looks at such data and interpolates by lines every 10 of them (to avoid seeing just a stain). The read line is the running averages of the $\frac{\alpha(\mathbf{u}(t))}{\nu}$: $\frac{1}{t} \int_0^t \frac{\alpha(\mathbf{u}(t'))}{\nu} dt'$ which by the conjecture should tend to 1 represented by the black horizontal line.

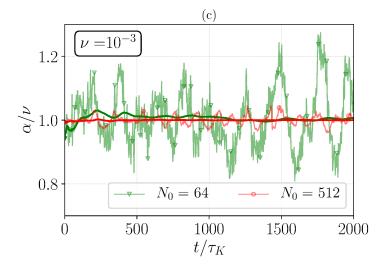


Fig.16c in [5]: **3D** $\frac{\alpha}{\nu}$ and $\alpha > 0$???, $(N = 21 \ (i.e. \sim 8 \cdot 10^4 \text{ modes}))$ or and $N = 170 \ (i.e. \sim 4 \cdot 10^7 \text{ modes}), R = 10^3$. Remark that the fluctuations are smaller at large N.

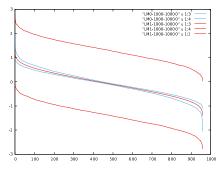


Fig.6 in [4]: R = 2048, 920 harmonics (N = 15). Plot of Local Lyap. exp. (*i.e.* spectrum of the Jacobian matrices $J(\mathbf{u}(t))$, *i.e.* $\lambda_k(\mathbf{u}), k = 0, \ldots, 920, \mathbf{2D}$) **red**= upper and lower lines, $\max_t, \min_t \lambda_k(t)$ in **RNS blue**=max_t, $\min_t \lambda_k(t)$ in **INS**, **average**: in **BOTH** cases $\overline{\lambda}_k$ averaged for each k over in the **central red** line

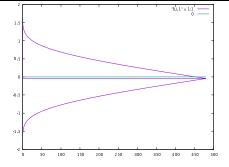


Fig.7 in [19]: Quasi pairing of Lyapunov's RNS & INS $\mathcal{N} = 920$ harmonics of the previous figure.

The $\overline{\lambda}_k$, average local spectrum of $J(\mathbf{u}(t))$ (central red line, equal for RNS and INS) of the previous figure, are plotted as $(k, (\overline{\lambda}_k + \overline{\lambda}_{\mathcal{N}-1-k})), k = 0, \dots, \mathcal{N} - 1$, showing approximately a "pairing" to a level < 0 (equal to $\sim \frac{2}{\mathcal{N}}$ times the average phase space contraction $\overline{div} = \sum_k \overline{\lambda}_k$). However this is likely due to the small N (N = 15 in this case): for larger N the graph of $(\overline{\lambda}_k + \overline{\lambda}_{\mathcal{N}-1-k})$ is expected to be a decreasing curve.