Statistical ensembles in fluid dynamics
Incompressible NS equations on [0, 27]¢ with periodic b.c.,
large scale forcing f, UV cut-off N (eventually — oo) for

u(x) = Zg;ll Z|k\§N { ec(k) Ui e are:
c

ug = n(u,u)y — vk*uf, + fi, “INSN eqs.”

(fi = 0 for k| > k fixed all over, ||f|| =1.)

Call i)} the stationary prob. distributions (SRB).

Their collection &Y defines “viscosity ensemble”;

viscosity
Concentrate attention on the local observables: 1i.e.
functions O(u) depending only on finitely many .

The random nature of the viscosity v suggests that it can
be replaced by an observable that fluctuates chaotically.
Generating a new evolution but equivalent to it.
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Thus the following equation is proposed to generate an

, . N :
ensemble £ equivalent to Em-scosity.

ug = n(u,u)y, — a(u) ku, + fi, “RNSN egs.”
where o is such that D = 3", _\ k*|ui|*, enstrophy, is
an exact constant. a(u) value is (by inspection)
> ke <n(u, u), k*ug + fﬁkQﬂﬁ)
2 e K f?

The RNSY egs. stationary distr.s will be parameterized by
the value of the enstrophy D and denoted p}.

afu) =

Their collection forms “enstrophy ensemble”, &, srophy

RNSY egs is reversible and call a “reversible viscosity”.
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Recall enstrophy definition |D(u) ™ $° k2 |ug |2

Conjecture: Let )Y (0), p§(O), O=local observable.
If D is related to v (and N) by:

D = 1)) (D)
then for all local observables O it will be

s N IS N
Jim 7 (0)= lim pp(0),

“INS and RNS equations are equivalent”, on local obs., and
on condition of equal enstrophy once UV cut of is removed.

Strict analogy with ensembles equivalence in SM: e.g.
microcanonical ensemble and isokinetic ensemble are
equivalent on condition of equal average kinetic energy (in
Hamilton egs.) and equal kinetic energy (in isokinetic egs.)
in the limit V' — oo on local observables).
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A rigorous consequence: equivalence condition implies

lim p¥(a) = v, [<— W =F -uislocal O
N—o0

So corresponding distributions equivalence implies
“reversible viscosity” « has average v: “homogeneization”.

Homogeneisation tests by various groups.
In 2D up to ~ 32% ~ 103 harmonics uy, v~ 1073
In 3D up to ~ 340° ~ 5-107 in d = 3 and v in (107, 107°).

In 3D conjecture tests on several local O(u)’s confirm it
but in a weaker form: it has been necessary to restrict to
O(u) localized on scales larger than a constant ¢ of order 1
times the Kolmogorov scale

=
N

Kkolmogorov = (

Sl O

Ui
=)
i.e. O(u)’s only functions of uy with |k| < cKyoimogorov-
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In my opinion a firm conclusion on ¢ < +o00 requires
further simulations (larger N, finer integration step ..).

Open question/test is whether in the reversible evolution
the multiplier « (with average v) has a distribution which
gives probability zero to u’s with a(u) < 0.

Important: if on the attractor a(u) > ¢ > 0 then enstrophy
constancy = attractor consists of co-smooth velocity
fields.

So either o fluctuates below 0 or conjecture is likely false.
From the simulations it seems that events with o < 0 are
possible even though very rare.

Conclusion: perhaps setting NS equations in a Sobolev
space is not the only physically sensible option.
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See Appended References for

1) A first equivalence example: [1]

2) Path to the conjecture: [2, 3, 4, 5]

3) 3D enstrophy ensemble: [5, 6]

4) 3D energy ensemble: [7]

5) Shell model: [§]

7) Stat-Mech: [9, 10, 11, 12, 13]

8) Turbulence physics: [14, 15, 16, 17, 18]

See Appended Simulations Examples
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Fig.1 in [19] 2D: h = 271 R = 2048, N = 31, 3968 modes.

Data of 2ul®) ( ) (blue fluctuations) are registered at multiples of
h=1 by 4: the plot looks at such data and interpolates by lines
every 10 of them (to avoid seeing Just a staln) The read line is
the running averages of the a(u(t). h g a(ulft D) g¢' which by the
conjecture should tend to 1 represented by the black horizontal

line.
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Fig.16c in [5]: 3D < and a > 0?77, (\V =21 (ie. ~ & 107
modes)) or and N = 170 (i.e. ~ 4 - 107 modes), R = 103.
Remark that the fluctuations are smaller at large V.
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Fig.6 in [4]: R = 2048, 920 harmonics (N = 15). Plot of Local
Lyap. exp. (i.e. spectrum of the Jacobian matrices J(u(t)), i.e.
Ae(u), k= 0,...,920, 2D)

red= upper and lower lines, max;, min; Ag(t) in RNS
blue=max;, min; Ag(t) in INS,

average: in BOTTH cases \;, averaged for each k over in the
central red line
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Fig.7 in [19]: Quasi pairing of Lyapunov’s RNS & INS

N = 920 harmonics of the previous figure.

The )y, average local spectrum of J(u(t)) (central red line,
equal for RNS and INS) of the previous figure, are plotted as
(k, (A +Av—1-%)), k=0,...,N — 1, showing approximately a
“pairing” to a level < 0 (equal to ~ % times the average phase
space contraction div = ), Ax). However this is likely due to
the small N (N = 15 in this case): for larger N the graph of
(Ak + Av—1-#) is expected to be a decreasing curve.



