
Navier-Stokes equation:
how relevant the existence-uniqueness problem?

Abstract: Existence-uniqueness theorems may be too strict
requirements for many problems in Physics: Statistical
Mechanics flourishes studying systems for which no
existence-uniqueness is available for most infinite systems to
which ideally it should apply in studying thermodynamics.
Here an analogy is proposed between the theory of the
thermodynamic limit and the problem of fluids and
turbulence discussing pro-and-con for a statistical
interpretation of viscosity and reversibility of fluid motion,
also with attention to recent computer simulations.
*



Navier-Stokes equation:
how relevant the existence-uniqueness problem?

Properties of a stationary state of an
incompressible fluid in a periodic box of side L = 2π
and subject to a ’large scale’ force f is considered.

’widely accepted’, [1]: ℓK = LR− 3
4 gives order of

length-scale below which energy, input at large
scale, is transferred to be dissipated by the
viscosity action.
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A stationary NS-states theory should predict at
least averages of observables O(u) depending on u
via large scale Fourier’s components uk, i.e. with
|k| < c ℓ−1

K , for some c = O(1).

Represent a velocity u(x) as:

u(x) =
∑

k 6=0,c=1,2

uc
k
i ec(k)e−ik·x, x ∈ [−π, π]3

||ec(k)|| = 1, two unit vectors

k · ec(k) = 0,

e1(k) · e2(k) = 0 and ec(k) = −ec(−k),

uc
k
= uc

−k
complex scalars.

The Navier-Stokes equations of motion are:



u̇(x) = −(u
˜
(x) · ∂

˜
)u(x)− ν∆u(x)− ∂p(x) + f(x)

∂ · u(x) = 0

and f(x) =
∑

0<|k|≤kmax
f c
k
i ec(k)e−ik·x:

constraint |k| ≤ kmax indicates that forcing occurs at
large scale.

Observables O(u)’s depending on finitely many
harmonics of u will be at center of attention here;
they will be called i.e. “large scale observables” or

“LOCAL OBSERVABLES”
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If NS is considered fundamentally correct, it should
predict properties of the time averages of all local
observables, not just those of scale above ℓK.

Unavoidable difficulty: no guarantee for a

NS-solution, Stu0
def
= ut, initiating at a smooth u0: i.e.

no stable algorithm exists for constructing ut, see [2].

Research mostly devoted to regularized NS eq.: i.e.

modified so that a priori u(x) evolves remaining
smooth and admits an algorithm to construct
(Stu)(x) = ut(x)

Example of regularization:
write NS as equations for the harmonics uc

k
, i.e.
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u̇c
k
= −

∑

k1+k2=k
a,b=1,2

T
a,b,c
k1,k2,k

ua
k1
ub
k2
− νk2uc

k
+ f c

k

where T
a,b,c
k1,k2,k

def
= (ea(k1) · k2)(e

b(k2) · e
c(k)).

Set = 0 all ur
h
with h = (h1, h2, h3) and maxi |hi| > N .

This ODE, named INSN (Irreversible NS), is on a
DN = 2((2N + 1)3 − 1)-dimensional phase space, f is
fixed once and for all (with ||f ||2 = 1, say, and on
large scale (fk = 0, |k| > kmax)): depends on ν, only

A general property of ODE’s generating “chaotic
motions”, like the INSN, is very important: it is to
admit, generically, an unique SRB-distribution µN

ν .
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This means (Ruelle) that, aside from a zero volume
set of data u, time averages of all observables O are
obtained by integration 〈O 〉 = µN

ν(O).

Hence stationary properties of the INSN evolution
(which is certainly chaotic at small ν) are
completely determined by SRB, [3, 4, 5].

At ν’s where uniqueness of the SRB distr. can be
assumed, this answers “which is the probability
distr. relevant for the averages” among the
uncountably many stationary ones ? :

it is the SRB distr. µN
ν .
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Of course the basic existence problem has not
disappeared: forgetting that µN

ν is not known, the
interest, if the NS equations are taken as
fundamental, is entirely resting on the limits as
N →∞ of the local observables averages.

But analogy with Stat. Mechanics (SM) is manifest.

(Hamiltonian) eqs. of motion for rV hard core
particles (say) in a volume V can be seen as ODE
regularizing the evolution of an infinite gas of
density r for which no constructive existence -
uniqueness is known.
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Still SM fared very well in absence of
existence-uniqueness results for the evolution of the
∞-system, because of the physicists’ attitude.

The ergodic hypothesis can be interpreted as
identifying the microcanonical distributions µV

E

with the SRB distributions for the chaotic
microscopic evolution described by the finite
volume Hamiltonian ODE.



Thus in SM the time average of the value of an
observable O(p,q) is simply 〈O 〉VE ≡ µV

E(O): the O’s
are restricted to be LOCAL

i.e. as V varies their values depend only on
positions-velocities of particles located in a
V -independent region inside the confining V , [6].

In SM it is then shown that (in many models)
limV→∞µV (O) = 〈O 〉 to exist ∀ “local” O:
“thermodynamic limit”b

And constraints between the various average values
are exhibited to lead to the great achievement of
showing, in important models, that varying the
systems parameters the averages invariably change
in agreement with the variations forseen by the laws of

thermodynamics, provided V is large enough, [6, 7].



Analogy with fluids

Unif. distr. on energy surface ←→ SRB
distribution. In INSN (chaotic) the SRB uniquely
describes the stationary statistical properties.

The assumption is inherited from the microscopic
motion of the fluid molecules, even when the fluid
flow is periodic (e.g. if viscosity is large): as the
fluid equations are derived via scaling limits,
without change of the eq. of motion.

The cut-off N in INSN plays the role of the finite
volume cut-off V in SM; both look at average
properties of a restricted class of observables: i.e.

the local ones.
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The just sorted analogy leads to define: viscosity

ensemble ≡ collection for ν > 0 of SRB stationary
distributions µN

ν for the INSN equation.

For each ν > 0 the distr. µN
ν assigns the average

µN
ν(O) = 〈O 〉Nν of any local observ. O on a flow with

initial data randomly selected with a distrib. with a
density with respect to the volume in the
DN -dimensional phase space.

In the corresponding SM case the microcanonical
distribution µV

E(dpdq), for a system of particles of
total energy E enclosed in a volume V , assigns the
average value µV

E(O) = 〈O 〉VE to any local observable.
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At this point we ask whether it is possible to define
other collections EN of stationary distributions λN

γ
which, depending on a parameter γ, will assign
averages 〈O 〉Nγ = so that a correspondence ν←→γ

can be established in the form γ = gN(ν) implying:

lim
N→∞

µN

ν(O) = lim
N→∞

λN

γ(O) if γ = gN(ν)

Then we shall say that the ensembles ENviscosity and
EN are equivalent (in the N →∞ limit).

Just as we call microcanonical distr.s µV
E equivalent

to canonical ones λV

β in the limit as V →∞

provided β and E are suitably related. [8].
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Viscosity phenomenologically describes an average
over chaotic microscopic motions it is conceivable
that it could be replaced by another force subject
to rapid fluctuations with average ν, while
properties of large scale observables (i.e. the local
ones) will be neglegibly affected.

Describing the same system with different
equations which become equivalent for practical
purposes (and even rigorously in suitable limits) for
a vast class of observables is familiar in SM: an
example is the equivalence between the
microcanonical and the isokinetic ensembles.
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Since 1980’s different equations are used describing
the same system and yielding same averages to
interesting observables (at least approximately:
complete equivalence could only be in limit
situations, like V →∞, not really accessible).

Vast literature on simulations on nonequilibrium,
[9, 10, 11] provides many examples.

Different equations for the same system: usually
obtained by adding to the equations new forces so
designed to turn one, or more, selected (typically
non-local) observable into a constant of motion.
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The extra forces have been often interpreted as
simulating the action of “thermostats”: such are
the “Nosè-Hoover” thermostats, [12], or the
“Gaussian” thermostats, [13]. It is even possible to
impose simultaneously many extra forces: a most
remarkable case in [14] concerns the NS eq..

Selection of the observables which, via the
modification of equations, must remain constant is
addressed towards quantities that are expected to
have small fluctuations in a limit situation of
interest, like kinetic energy in the example.
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Coming back to the NS equations

u̇c
k
= −

∑

k1+k2=k
a,b=1,2

T
a,b,c
k1,k2,k

ua
k1
ub
k2
− νk2uc

k
+ f c

k
(#)

It is proposed, [15, 16, 17], to change the viscosity ν

into a multiplier α so defined that the evolution

keeps constant “enstrophy” D(u)
def
=

∑
k
k2u2

k

(“enstrophy thermostat”). Achieved by:

α(u) =

∑
c

∑
k
(−tc

k
(u)k2uc

k
+ k2fc

k
uc

k
)∑

c

∑
k
k4|uc

k
|2

(∗ : RNSN)

where tc
k
(u) comes from the non-linear term in the

eq.(#).

The R in the name RNS stands to stress that the equation

RNSN is time reversible, unlike the irreversible INSN.

Ypatia, June 10, 2022 17/25



Physical interpr.: thermostats are forces with the
effect of removing heat generated by the forcing.

For an incompressible fluid above, heat has to be
taken away (in either enstrophy or in energy
thermostat)
to maintain the relation between pressure and
temperature at constant density
as prescribed by the equation of state.

The stationary distributions for the equation,
referred as RNSN , with α in (*) are parameterized
by the enstrophy value D as λN

D
and their collection

will be called “enstrophy ensemble”, ENenstrophy.



Given viscosity ν suppose, for simplicity, that there
is only one SRB distribution µN

ν ∈ E
N
viscosity for all N

large:

Conjecture: Let D = µN
ν (D) be the average enstrophy.

Then also the distribution λN
D ∈ E

N
enstrophy is unique. The

distributions µN
ν ,λ

N
D are equivalent in the sense

lim
N→∞

µN
ν(O) = lim

N→∞
λN

D(O) (@)

for all local observables O.
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In other words the viscosity ensemble and the
enstrophy ensembles are equivalent in the limit
N →∞ provided their entrophies agree, if the
stationary distr. is unique.

More generally the conjecture is interpreted as
saying that the SRB distributions for the INSN

equation can be put in one-to-one correspondence
with the distributions for the RNSN equation with
the same enstrophy so that for corresponding
distributions @ holds.
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First test is a non trivial consequence: namely if
both sides of INSN or RNSNare multipled by uc

k

and summed over c,k one finds, respectively:

d

dt
E(u) = −νD(u) + f · u,

d

dt
E(u) = −α(u)D + f · u

(no non-linear term ! (cancellation)).

Equivalence condition is 〈 D 〉Nν = D and O = f · u is a
local observable : hence it follows that the averages
〈 f · u 〉 must be equal in the limit N →∞ and

ν = lim
N→∞

〈α 〉ND

because the averages of d
dt
E(u) must vanish.
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Comments

(1) Equivalence test: 〈α 〉ND −−−→N→∞
ν is performed in

2D and 3D: with positive results in all published
cases: see Fig.4 in [15] and Fig.1 in [18], Fig.4 in
[19], Fig.15a in [17].



(2) The 2D tests have shown that in many cases
equivalence holds also for observables that are non
local. Remarkable is the observable α(u) studied as
an observable for the INSN equation. It also
averages to ν while presenting smaller fluctuations
compared to the RNSN , see [15] 2D case and 3D:
Fig.16a [17] with exception in Fig.4 of [19];



(3) led to equivalence tests of other typically non
local observables. A few tests, only in 2D so far,
have been performed comparing, under the
equivalence condition, the spectra of the symmetric
part J(u) of the DN ×DN Jacobian matrix
∂u̇c

k

∂u̇b
h

def
= J(u)c,k;b,h.

Such observables are related to the Lyapunov
exponents, [20, 21]. The result has been that
essentially the eigenvalues averaged over the flows

agree if ordered in the same way (e.g. in decreasing
order): see Fig.7 in [18] and Fig.5 in [15].

Most remarkable is that, while the average of the
eigenvalues agree surprisingly well, the eigenvalues
of the J(u) reach equal averages, along the two
evolutions, in spite of much larger fluctuations in
the RNSN compared to the INSN , see Fig.6 in [18].



(4) 3D tests are still somewhat preliminary: yet
yield important informations. If conjecture is OK it
is expected that in RNSN the fluctuating viscosity α

fluctuates and events with α < 0 occur.

Otherwise it can be proved that D being bounded
(ν〈 D 〉N −−−→

N→∞
= ε <∞, at fixed f) would imply that

the velocity u remains smooth with all derivatives
bounded uniformly in N , see [17, Appendix], thus
giving a new prespective to the question of
existence and regularity of the NS flows.

It is surprising, if ν is so small that the fluid is
certainly in a turbulent regime, that for N large
velocity fields u(t) with α(u(t)) < 0 are not observed
(after a short transient time depending on the
initial data) in several 3D simulations [19, 17].



Question to be understood is whether events with
α < 0 are not seen because they are rare events
(which is my expectation), so rare to be missed
(when N is large) in time series with too large time
and/or integration step. For evidence, see Fig.15 in
[17].
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(5) Results in [17] suggest that conjecture above is
too strong and might fail unless the definition of
local observable is deeply modified restricting the
notion of local observable, for the purpose of the
conjecture.

So far the requirement for locality is that O

depends only on a finite number of harmonics uk:
hence equivalence would be claimed for O

depending on a single Fourier component k with
|k| > kν = ℓ−1

K if N is large enough.

BUT..



But from [17] it emerges that equivalence is not
verified in several such tests: a further condition
appears needed, i.e. that O depends only on the
components uk with |k| < c0kν for some constant c0
of order 1.

See “Conjecture 2” and Fig.11–13 in [17] which
suggest a value c0 ∼

1
8
. The evidence is not yet

conclusive, in my view: more detailed analysis is
needed to exclude c0 =∞.



(6) Tests of existence of several attractors have
shown that even in presence of Chaotic motions
there are cases in which multiple attractors can
coexist showing strong intermittency phenomena.,
see figure below.



(7) The remark (4) suggests that the theory of the
NS equation based on searching for existence and
uniqueness in function spaces could be usefully
extended to equivalent equations:

while not simplifying the problem it can open
perspectives, just like introducing new equilibrium
ensembles does not solve basic problems of SM but,
actually, introduces new ones overcompensated by
the deeper understanding of thermodynamics.
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Fig.4 [15] 2D: R = 2048, N = 15, 960 modes, h = 2−17

1) The large fluctations are RNSN values α(t)
ν
, red,

2) and their running average (i.e. time average
1
t

∫ t

0
α(t′)
ν

dt′ =
〈α 〉t0
ν

is red line “converging to 1.
3) The blue line, also converging to 1, is the INSN

running average of the observable α(u(t))
ν



�✁✂

�✄

✂

✄

✁✂

✄✂✂ ✁✂✂✂ ✁✄✂✂ ☎✂✂✂

✆✝✞�✁✟✁✁�✁✂✂�☎☎✂✁✆ ✞ ✁✠✄ ✡☛✡☞✌ ✁✂

✆✝✞�✁✟✁✁�✁✂✂�☎☎✂✁✆ ✞ ✁✠☎

✁

α(t)
ν

〈α 〉t0
ν

Fig.1 in [18] 2D: h = 2−14, R = 2048, N = 31, 3968
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α(t)
ν

Fig.15a in [17] 3D α(t)
ν
, and running average 〈 α

ν
〉t
0

and ?? α > 0??;
N = 21 green, N = 170 red
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〈En 〉t0 En(t)

INS R = 2048, h = 2−13, N = 10, previous case with
intermittency of enstrophy.
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