
Viscosity & reversibility in fluid flows

It is well known that an exixtence-uniqueness theorem for
the 3D NS-equation is an open problem.

A similar situation arises in Equilibrium Stat. Mech.

Hamiltonian equations for a system of ∞-many hard balls
or Lennard-Jones atoms are (still) an open problem as far
as existence-uniqueness are concerned

Yet Equilibrium Stat. Mech. (and Thermodynamics) is
conceptually a problem dealing first with ∞-systems

It is flourishing not only as a Physics subject and a key for
theory, experiment and applications but also as a source of
deep mathematical questions and rigorous results in ODE,
PDE, Probability theory, Computer science ....
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But lack of existence/uniqueness of solutions for the
equations of motion is not an obstacle for equilibrium SM,
see [1] for a rare case in which it is solved.

The issue is simply ignored: “systems are large not infinite”
and consist of N particles enclosed in finite container V .

Thermodynamics questions are shifted to investigating
restricted properties of the finite volume stationary states
which are eventually V independent.

In this context no existence-uniqueness problems arise

Mathematically the main object becomes the state: i.e. a
“time-invariant” or “stationary” probability distribution
µV (dpdq) on phase space.
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By integration µ gives the average values

〈O 〉V ≡ µV (O) ≡

∫
O(p,q)µ(dpdq)

of observables O which are local functions on phase space

i.e. depend only on the particles located in a finite region
Λ ⊂ V as functions of the configurations
(p,q) = (p1, . . . , pN , q1, . . . .qN) ∈ R3N × V 3N ,.

The point is that at any fixed Λ and in the limit as V → ∞
the averages µV (O) become (or should become) V
independent defining the “state”, i.e. the collection of
averages of all local observables.
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Existence of the limits as V → ∞ (called
“thermodynamic limit”) and the properties of the states
(i.e. of the collections of averages of local observables O)
becomes the center of attention.

At the same time existence and uniqueness of the solutions
of the underlying Hamilton equations at infinite V does
not even arise as a question: the theory only deals with
finite sistems.

A new problem, already studied by Boltzmann, is that
there may be several invariant stationary states once given
the macroscopic parameters like total energy E, total
kinetic energy T , or temperature β−1 or other.
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Once the governing equations are fixed, one has to deal
with two immediate problems:

1) essentially all evolution ODEs and PDEs, for which
unique solutions exist, admit infinitely many stationary
distributions ! whereas only one of them, by integration,
can be expected to describe the average properties of the
system.

How to select it?

In Equilibrium Stat. Mech. Boltzmann and Maxwell
proposed the Ergodic Hypothesis, EH, which typically
selects the (only, when EH holds) distribution µ.

Out of Equilibrium, i.e. in presence of dissipation, the EH
has been generalized to identify the “natural distribution”
which is unique when the system exhibits chaos: this has
been clearly formalized by Ruelle [2, 3, 4, 5] and is a simple
extension of the EH.
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2) even under the EH or its extension to chaotic systems
there may remain several possible stationary distributions
µ for a given evolution eq.

Typically there are only finitely many distinct states µ and
all the others can be expressed as their convex
combinations: with the interpretation of coexisting phases
in St. Mech. or Intermittent phases in fluid mech. Here it
is convenient to discuss omly the case in which, given the
equations of motion, there is only one state.

So a real problem arises already when the natural
distribution is unique but there are several equations of
motion that describe the same system (as in St. Mech.):
“each with its own natural distrinution”
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Is this new kind on “non uniqueness” a new difficulty? is
there ambiguity about observable average values ?

Solution in S.M. has been simple: such stationary
distributions can be (often) shown equivalent:

They lead to the same “Thermodynamics” in the limit of
infinite volume, if attention is limited to study properties of
the mentioned class of observables: local observables.

Is it possible to follow the same path and look at the fluid
equations on a similar way as the one followed in
Equilibrium Stat. Mech.?

In the theory of fluids a situation arises which bears some
resemblance with the above. It will be examined mainly in
the case of an incompressible fluid in a periodic container.
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The velocity field u(x), x ∈ Ω = [0, 2π]d, d = 2, 3 is:

u(x) =
∑

0<|k|

uke
−ik·x, k = (kβ)β=1,...d ∈ Zd

uk =
∑

β=1,2

i uβ,k eβ(k), k · eβ(k) = 0

with eβ(k), β = 1, 2, 3, unit vectors with e3(k) =
k

|k|
NOT

present (incompressibility). And incompressible NS eq.:

u̇(x) =−(u
˜
(x) · ∂

˜x
)u(x)− ν∆u(x)− ∂xP (x),

∂x · u(x) = 0,

∫

T d

dxu(x) = ~0

“INS=irreversible NS”, for the harmonics uβ,k.

Here too no general existence-uniqueness (in dimension 3).
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The difficulty is the lack of control of the very small scale
features of the velocity fields.

In fluids interest, is directed towards properties of large
classes of observables which do not depend on small scale
structures, i.e. their value on u depends on the Fourier’s
components uk with |k| < Λ and Λ ≪ N ; but far from all.

Existence problem is analogous to that of existence of
solutions of eq. of motion for infinite particle systems.

As in that case it will be simply set aside by imagining that
the equations only regard the velocity components uβ,k

with |k| < N : the UV cut-off N becomes analogous to the
volume cut-off V in SM.

Idea: as in SM case infinite V systems are an abstraction,
so in FM is N = ∞
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Of course one is NOT interested in the value of N , much
as in SM on the size V of the volume: it should NOT be
relevant (as long as it is large compared to the scale of the
observables). This leads to propose

1) define O(u) “local” observable if depends on u only
through Fourier’s components uβ,k with |k| < K: they are
supposed to evolve in time with the NS equations with UV
cut-off N ≫ K: t → uN(t)

2) define a “stationary state” of the fluid the collection of
the limits N → ∞ of the time averaged values 〈O 〉N , along
the evolution t → uN (t)), for local O’s:

〈O 〉 = lim
N→∞

〈O 〉N

Here K ≪ N is arbitrary but fixed and local observables O
are alike the ones in SM depending only on particles
located in a finite volume Λ ≪ V .
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Summarizing the parallel SM∼FL:

SM : (a) local observables O depend only on particles in a
finite region K ⊂ V (arbitrary, V -independent).
(b) time evolution ~x → ~x(t)V depends on vol. cut-off V .

FM : (a) local obs. O depend only on modes uβ,k with k
in a finite K < N (arbitrary, N -independent).
(b) time evolution u → u(t)N depends on UV cut-off N .

In both cases interest is on “stationary states”, i.e. on the
collection of the time averages 〈O 〉V or, resp., 〈O 〉N in the
limits V,N → ∞, (in the simple cases of no phase
transitions, resp, no intermittency, i.e. single attractor).

To stress the analogy each collection E of “states” will be
called an ensemble: as in Stat. Mech. there are
“microcanonical”, “canonical”, “grand canonical”,
“isokinetic”, ... ensembles
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A key role is played by the stationary distributions for the
regularized NS equations: their collection E I,N will be
called the viscous ensemble for NS.

Possibility of other ensembles and their equivalence arises if
NS equations are regarded as a Hamiltonian system (Euler
equations) subject to forces and to constraints
(“thermostats”) that impose incompressibility (i.e.
prescribe pressure versus temperature at fixed density).

Viscosity empirically accounts for the thermostat action.

Then it should be possible to replace ν with another (as
empirical) quantity achieving the same aim of allowing the
evolution to generate a stationary state:

which on the selected observables will attribute the same
averages in the continuum limit N → ∞.
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Concentrating on stationary NS fluids, the physical role of
the thermostat is to avoid “blow up”, due to power injected

〈W 〉 = 〈

∫

Ω

f(ξ) · u(x)dx 〉N

thus allowing to reach a stationary state.

Important to keep in mind that, if fk is a large scale forcing
(i.e. |fk| 6= 0 only for small |k|) ⇒ W is a local observable.

So we can classify stationary states by the time average of
“dissipation” 〈W 〉 which in the standard NS equation is
proportional to the average “enstrophy” D(u)

D = 〈 D 〉 = 〈

∫

Ω

(∂u(x))2dx 〉 : νD = 〈W 〉

[i.e. multiply the NS equation bu u and integrate, finding
d
dt

∫
u(x)2

2
dx = −ν

∫
(∂u)2 +

∫
f · udx and use that l.h.s has

0 average, being a time derivative, i.e. νD = 〈W 〉
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A proposal for an alternative thermostat is to replace ν∆u
by α(u)∆u with α(u) a multiplier such that the enstrophy
D itself is a constant of motion. The equation, here
“RNS=reversible NS”, with UV cut-off at |k| ≤ N :

u̇ = −(u
˜
· ∂
˜
)u− α(u)∆u+ f − ∂P

And if Λ(u) = −
∫
Ω
(u
˜
· ∂
˜
u) ·∆u dx, [multiply both sides by

∆u integrate by parts find α to obtain 0], α turns out:

α(u) =
Λ(u) +

∑
k
k2fk · uk∑

k
k4|uk|2

, d = 3

Given a f “large scale forcing” , fk 6= 0, |k| < k0, ‖f‖ = 1
the equation in Ω = [0, 2π]d has only one parameter: the
viscosity ν for INS and the enstrophy D for RNS.
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Fixed the UV cut-off N , as ν or D vary let

µI,N
ν (du)= stationary distribution for INS, parameter ν

µR,N
D (du)= stationary distribution for RNS parameter D

and introduce two ensembles:

“viscosity ensemble” be collection E I,N of the µI,N
ν (du)

“enstrophy ensemble” be collection ER,N of the µR,N
D (du)

The proposal is: there should be a 1-1 correspondence
between the elements of the two ensembles, (i.e. between ν
and D) and:

in corresponding elements the expectation values of all
local observables will coincide in the limit N → ∞.

Formally:
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Equivalence conjecture (“EC”): Under equal
dissipation condition, i.e. if ν and D(u) verify

〈 D 〉i,Nν = D

it is, for all local observables O:

〈O 〉Iν
def
= lim

N→∞
〈O 〉I,Nν = lim

N→∞
〈O 〉R,N

D

def
= 〈O 〉RD

for all local observables O. [6, 7, 8]

In particular W =
∑

k
fkuk is a local observable and

therefore 〈W 〉i,Nν = 〈W 〉r,ND : at corresponding ν,D (being
averages of the local observable W (u)); but

〈W 〉I,ND = ν〈 D 〉, 〈W 〉R,N

D = 〈α 〉D

follows from the equations: therefore:

ν = 〈α 〉R,N

D
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The mentioned simple rigorous consequence of EC:

ν = lim
N→∞

µr,N
En (α)

this can be a first simple, but demanding, test of the
conjecture, “viscosity test”.

The α will show very strong fluctuations over the time scale
of the largest Lyapunov exponent, at least if the viscosity is
so small that a global existence cannot be ascertained for
the INS without cut-off.

Still the EC implies that the time average of α is ν.
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Remark:

Negative values if α “must” show up if ν is small enough at
least for all N large: otherwise the existence and
uniqueness for NS would be implicitly solved, because (it is
a simple theorem that) if

α(uN(t)) ≥ ε > 0 for all N large (eventually in t) and for
some ε the UV cut-off equation would have N-uniformly
smooth solutions with probability 1 in stationary states

Therefore I expect that possibly very rarely negative values
of α should be observed.
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Tests, only for d = 2 and work is in progress for d = 3
1) viscosity test (2D):

�✁✂

�✄☎

�✄✂

�☎

✂

☎

✄✂

✄☎

✂ ✄✂✂✂ ✁✂✂✂ ✆✂✂✂ ✝✂✂✂ ☎✂✂✂ ✞✂✂✂ ✟✂✂✂ ✠✂✂✂ ✡✂✂✂ ✄✂✂✂✂

☛☞✌�✂✍✄✄�✁✂✂�✄✂✂✂✂☛

☛☞✌�✄✍✄✄�✁✂✂�✄✂✂✂✂☛

☛☞✌�✂✍✄✄�✁✂✂�✄✂✂✂✂☛ ✌ ✄✎☎ ✏✑✏✒✓ ✁✂

✄

Green: (t, 1
t

∫ t

0
1
ν
α(u(τ))dτ), in RNS (the test)

Red: (t, 1
t

∫ t

0
1
ν
α(u(τ))dτ), in INS, (expected?)

Yellow: value of (t, 1
ν
α(u(t))) in INS, (∼same in RNS !)

Black: conjectured value 1
integration step h = 2−17, recorded every 4h−1 steps
time unit 4, total time 104 records, N = 31× 31
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2) Lyapunov test: (2D) (not part of conjecture)

�✁

�✂

�✄

☎

✄

✂

✁

☎ ✄☎☎ ✂☎☎ ✁☎☎ ✆☎☎ ✝☎☎ ✞☎☎ ✟☎☎ ✠☎☎ ✡☎☎ ✄☎☎☎

☛☞✌☎�☎�✄☎☎☎☎☛

☛☞✌☎�☎�✄☎☎☎☎☛ ✍ ✄✎✁

☛☞✌☎�☎�✄☎☎☎☎☛ ✍ ✄✎✆

☛☞✌✄�☎�✄☎☎☎☎☛ ✍ ✄✎✁

☛☞✌✄�☎�✄☎☎☎☎☛ ✍ ✄✎✆

☛☞✌✄�☎�✄☎☎☎☎☛ ✍ ✄✎✂

Red: Local Lyapunov exp. (k,maxt λk(t)) and
(k,mint λk(t)) for INS
Green: Local Lyapunov exp. (k,maxt λk(t)) and
(k,mint λk(t)) for RNS
Blue: common average value of INS and RNS exponents
31× 31 resolution.
expected?? NO!
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3) Reversibility test on INS (expected ??)

�✁✂✄

✁

✁✂✄

✁✂☎

✁✂✆

✁✂✝

✞

✞✂✄

✁ ✁✂✄ ✁✂☎ ✁✂✆ ✁✂✝ ✞ ✞✂✄

✟✠✡☛✞☛�✁�✁�☛✁✁✁✁✁✁✂☛✄☞☎✁✁✁✂✞☛✂✝✟

✟✠✡☛✞☛�✁�✁�☛✁✁✁✁✁✁✂☛✄☞☎✁✁✁✂✞☛✂✝✟ ✌✍✌✎✏ ✞✁

✑

Chaotic hypothesis implies “Fluctuation theorem”: if
σ(u)=volume contraction rate with time average σ+, the

p = 1
t

∫ t

0
σ(u(τ))

σ+
dτ (average “entropy production rate”)

satisfies large deviation law at rate s(p) s.t.
(s(p)− s(−p)) = p. Graph is over 3 · 106 INS evolution
data BUT uses σ(u) the reversible observable: i.e.
irreversible flow looks reversible. 7× 7 resolution.
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4) Intermittency test (2D)

�

✁�

✂��

✂✁�

✄��

✄✁�

☎��

☎✁�

✆��

✆✁�

✁��

� ✂���� ✄���� ☎���� ✆���� ✁���� ✝���� ✞���� ✟���� ✠���� ✂�����

✡☛☞✌�✍✂✂✌�✌✂�����✡ ☞ ✂✎✞

✡☛☞✌�✍✂✂✌�✌✂�����✡ ☞ ✂✎✆

enstrophy as function of t, and its running average, in INS
shows intermittency. BUT a check shows that the F.T.
does not hold in this case.
There are rather long intervals during which the motion
seems to dwell on a single attractor and FT might hold.
15× 15-resolution. Problem of precision?
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5) Preliminary: 3D viscosity test, RNS[9]

α/ν as function of t, and its running average, In
solid line, green (for UV cut off N = 21, i.e. 423 Fourier’s
modes) and red (for N = 166, i.e. 3363 modes) is the
running average of α/ν. Here N ≃ N0/3.
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6) Preliminary 3D viscosity test INS, ecpected?[9]

It is important to remark that in the above cases the values
of α stay substantially > 0. In [9] it was not possible to
exclude convincingly whether values α < 0 were absent
with probability 1 in the stationary states µ or not.
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This might be because α < 0 has, in the natural states µ
an extremely small probability (as I believe).

Also in [9] the Equivalence conjecture has been strongly
weakened by limiting the class of the local observables
which would have equal averages in the two ensembles E I,N

and ER,N .

Namely only O localized with |k| < Λ can have equal
averages, in corresponding states in the two ensembles, if
Λ < ckν where Kν is the Kolmogorov’s scale kν = ( 〈W 〉

ν3
)
1
4

and cν −−→ν→0
c0 ≤ ∞, (〈W 〉 = νD= dissipation per unit

time).

In [9] the limitation has been forced by the computer
non-availability to probe convincingly (in a reasonable time
and accuracy) the conjecture at larger cut-off values: the
possibility that the conjecture holds, in the form stated
here, remains while waiting for more powerful computers.
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(1): The idea of “equivalent thermostats” goes back, in
SM, to [10, 11], and received important contributions from
the Sydney school, [12, 13].

(2): Application to fluids, in a somewhat different form
and context, appeared in [14],

(3): In the “weak” form, fixed N and ν → 0, was discussed
in [15, 16, 17, 18, 19, 7, 20] and

(4): In the form discussed here, particularly relevant for
fluids, in [7, 8, 21, 9].

(5): One can also consider other ensembles: for instance
defining the multiplier α(u) so that energy rather than
enstrophy is conserved. The latter ensemble has been
considered, in view of the equivalence, in [22] for 3DNS,
with remarkable results.
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Supplementary material

�✁

�✂

�✄

�☎

�✆

�✝

✞

✝

✆

✞ ✝✞✞✞ ✆✞✞✞ ☎✞✞✞ ✄✞✞✞ ✂✞✞✞ ✁✞✞✞ ✟✞✞✞ ✠✞✞✞ ✡✞✞✞ ✝✞✞✞✞

☛☞✌�✞✍✝✝�✆✞✞�✝✞✞✞✞☛

☛☞✌�✝✍✝✝�✆✞✞�✝✞✞✞✞☛

Same viscosity test: only running average of α
ν
, 31× 31
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✂ ✁✂✂✂ ✄✂✂✂ �✂✂✂ ☎✂✂✂ ✆✂✂✂ ✝✂✂✂ ✞✂✂✂ ✟✂✂✂ ✠✂✂✂ ✁✂✂✂✂

✡☛☞✌✂✍✁✁✌✄✂✂✌✁✂✂✂✂✡ ☞ ✁✎☎

✡☛☞✌✁✍✁✁✌✄✂✂✌✁✂✂✂✂✡ ☞ ✁✎☎
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Enstrophy running average and fluctuations in INS and
superposed the enstrophy of the equivalent RNS; 31× 31
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Viscosity test in intermittent flow; 15× 15
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Same with only running average of α
ν
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FT: p-fluctuation for INS and, with error bars, RNS.
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FT: p-distribution for INS and, with error bars, RNS.
Compatible with Gaussian.


