Phi4 Hierarchical & Euclidean 1
Let Q;,i =0,1,... be a sequence of compatible pavements of
R with sides 27/, i =0,1,....

In A € Q; is defined a variable z5(x) and E(za(x)?) = 1
Field at a point x is ¢ = Z:\I:() zAi(x)2%(d*2)i. Models:
0) Ising h. fields: za(x) = za = £1, x-indep. in each A:
P(dz) =[]a Zzozil
1) Bernoulli h. fields: za(x) = za = £1, x-indep. in each A:
1.2

T 2%Adz,

P(dz) = []5 5"

iy

2) Markov h. fields: za(x) x-indep. in each A

N
- B *
ZNlexp—g[ E (zA—zA/)z—i—aZE zi}
A,AIEQ,' AEQ,'

> " over i & nn. AN € Qi B,a > 0 fixed s.t. (z3) is
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(3) Euclidean h. fields: Gaussian with covariance 2

N —2)i ; <N _
C)%)I/V =N, 2(d—2) Cgix,ziy' ie. (7 = 1_,_% - ﬁ
1 3 i
CX(O) _ / ik(x=y) qd )
Y 2m)d ) (14 K2)(4 + k?) )

In all cases =" can be large ((¢=V)2) = c N 2(d=2)i

. 14 o\: i “xi—1 (d—2)n
In all cases ¢/ = c2:(¢ 2”%. M=% 2> and

z', X" are constant in each A € @; (in models 1,2) or
almost constant in model 3, j.e. are e-Holder c.

ikx __

el Iky dr.
Why Holder: let w = |X y‘a fzk T )d?k; hence
<W fmk Eddk—C<OO Imp|les, |f 2€+d<4al’ld
x,y are in the same A € Q (or 'close’):

e<l, ifd=2 5<%ifd:3
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In all cases z', z/ are independently distributed for i # j and 3
at each scale correlation decays exponentially on the
respective scale, if present at all (in model 1 is absent).

Detailed UV-analysis deals with upper and lower bounds for
<N
fefl:(W )%:d’x \where I is the unit box. And it relies on

Lemma: Let A be a cube and A1, \;, ... be unit cubes paving .
Let ay € C°°(RY), with support in Ay and let aj(x) = a1(x — &)
where §; is the center of \;. Then if s < 4 — %, dcy, o,
N-independent constants, such that:

_ —c B2
pa(e | maxjl|ajioll gy < B) = e = N

and if s=integer, s +¢ < 2 — % the probability that the Holder C,
norm ||ajolc. < B is

—cre”2B?|A|

NA(mJ?X||aj90||Cg <B,Vj)>e
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All examples have the properties: 4
a) almost independently valued on each scale h,

b) almost constant at scale h, by the lemma above

c) for all A € Qu (up to large fluctuations):

VA_/ A (=M 27Ny = 0247 27dN) = g(a 204N

Therefore suggestion is to study, if d = 2,3:

N—1

N
- (d—8)Ny (ZaTVINXA
/e)\f,:(cpr)“:dx _ /e )\ZAEQN 2 Ha( e )

simply by a careful perturbative evaluation of the integral
over zp distinguishing the cases in which |za[, | Xa| are
respectively above or below a treshold

Ba = B(1+ N)P(log(e + A"1))%, A € QM

for p=4,2.
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5

The procedure is the same in the above models: in Euclidean
case Holder continuity lemma essentially reduces the
problem to the Markov or even Bernoulli models.

The lemma was proved in [1] and is a legacy of Benfatto,
whose contribution was essential as well as the idea to
introduce and use it in the work on the Markov case [2].

The d = 2 Bernoulli field contains the key ideas:

o= Y V2izR ni=1 SR =Y 1=N+1

A3X,A€Qi AAS(;,-
N N-1 .
ZA + \/NX , (N4,
=VNFIXN = VNF 18- 2247 [ o filed) i dx
a VvI+N

ZZ + \FNXXTl
v1+N
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6

NXa-
vN =) Z (1+N)2H4(m

) ON, on = |A| = 2-2N
AcQy v1+N

’Small fields’ integration:

N
N
[t =TT T xa(Xd < 8o

k=0 AcQy
Bk = (1+k)*Bg, By = (1+log))?B, By >3

Recursively: VN = VN, \7|(N_k) = EN_k+1(V|(N_k+1)). Vit=o0

/eV[NPN(dXN) > /eV’NXNPN(dXN) — /XNlel(dXNl)'

2
H / ZA + \/7X ‘ B )e_)\O_N(1+N)2H4(ZA+\/7XA/)e 2 dZA

NTT

< DN
AcQy ﬁ
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Integrals over za's independent: single A is computed O()\?):

+ \/NXA/ eiZZdZ
1-don(1+N 2/H z
UN( + ) 4( \/m ) \/E

+ 0(\ 20} BN Be1 Vo)
=1 — AonN2Hg(Xa/) + O(X2(log \)Be*N2052)
_ ef/\JNN2H4(XA/)+O()\2(Iog)\)2e°AN20rfﬁ)

By 40yN2 = on_1(1 4+ (N —1))?, and V! =0, recompose as
/eV,’VXNP(dZN) > VI X (log N)2e A N20o, 22N

> e—AQa(N,A)o,zVZQN\I\

i.e. each A € Qy contributes \2z(N, \)o?,,
e(N, A) = (log \)2e“*N?9; hence, by 0322V = 272N;

/ HX ) > e Sio eliN2 2]
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8
Now upper bound in view of the application to Markov fields.
Let x’b = HACD X(IXA | > B') >?’}3 = [Taco x(IXAl < Bj) sit.
Spe XDXDC <> pe DCXDXDC or even, integrating:

g N—1
VoetVo oy 1 NN  N-1 <N-1
XDXDCXDNflxDN—l,c

DNID

because | Xa| > By > 3 implies VA(Xa) > 0 and X, is so
large in D/Dy_; that, even replacing VN(D/Dy_;) with
VN=1(D/Dy_1), yields an upper bound.

By the lower bound analysis
V=L Le(NA)272N[I| -1 ~N-—1
Z/e DCXDCXD Z /e DN=1.e XDN IXDN 1,c
pDN-1
as:
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D_{N-1}

Figure: Green=large |X"| > By, Red=large |[X"N~1| > By_;.

Dn-1/Dn
positivity of H(x) for x > 2.

Replace V}. with V)t + V=1 = vI=1: here enters the
N N N—-1

/EVPXN(D)SC‘N(DC) < eVIN—l—‘,—)\zs(N,)\)Z—ZN||‘XN—1(D)

so that the £, = 2>, (N, \)272V|/| is an upper bound.
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Analysis to higher order: no extra work needed for 10

ZM Hi)\t“z (N, 227N

where S; are coefficients predicted by a perturbation analysis
(finite to all orders as the theory is “superrenormalizable”)
and (N, \) = (log \)?e* N20F;

In Markov models explicit integration over zp, A € Qy can be
replaced by the cluster expansion or by an argument of
probability theory to control exponentially decaying
correlations zx, zj,

[[3] with cluster expansion or [4] with a more standard
probabilistic method].
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11

The lower bound amounts to estimating, in presence of the
{ngZA + Xar| < Bnl, ]XA/| < BN 1} to a finite order in

Al W fXNeZAeQN Aoy Ha( fHA . Then:
/ I {w(a)-+13=>" Z K(Ry)...K(Rm)
AEQy m Ry,Rz,...,.Rm

(*)
where R; is a collection of A’s forming a connected set R;,
and RN R; =0 and

IK(R)| < (AayeCAN2om)yIRI

This is a “short range hard core interaction” between
polymers R; and a typical quantity to compute is partition
function to show validity of its perturbation expansion.
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12

In Euclidean models the Holder continuity on scale N
Lemma, allows treating the problem as in Markov cases, [2].

The Ising hierarchy (z) = z) = £1,vx € A € QV):

N N-1
<N ZX+NXX
N+ N)2 2 g=2
px =1 +N) JIEN
sOXSN:z’VZLVjLZXXNl, d=3

is an easy warm-up exercise (at least in the d = 2 case)

The Euclidean sine-gordon model can be treated along the
same lines and it is somewhat simpler, [5].
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Proceed to the upper bound starting from the identity: 14

N
1= Z H H x(|Xa| > Bj) H x(1Xal| < Bj)

A;CQ; i=0 AeD; A€Di
i=0,...,N

and set: V(Xa) =0,A € Qu, if [Xa| > By (as
Ha(x) > cx*, if x> 3). The integral to compute is then

ZA+VNXp
Z e N 2necoy Hil S H X(‘—|ZA £ VNXy | < By)

DnCQn A€EDy \/N
za + VNXar e Zadz
H X(\'A—A‘ > By) bl ¥
KDy VN ved
each A’ € Qn_1 contains jpr = 0,1,...,4 A € Dy with
\% < Bn). Let D’ C Qn-_1 such that each cube in D’

contains at least one A € Dy with ja <4 (i.e. a A with
‘XA’ > BN).
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Hence the integral is, if {ja}acD,
P(By, D' H (ejA/%E_()\,BN)+)\U,2VB,§,eCA)
AeD’
where P(By, D’) = probability that j, > 0,VA € D'.
By the lower bound the product is < et

The number of A € Q" labeled by ja > 0 is 42 s. t.:

SPBN, D)< Y e BMPT < (14 e BN
D’ £D'CQun_1

Iterating over N an upper bound is

FECO)I+ Y ele BRI = L E_(A)] = O(A)
N=0

(because By = (1 + N)*(log \)?By).
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