Let $Q_i, i=0,1,\ldots$ be a sequence of compatible pavements of R^d with sides $2^{-i}, i=0,1,\ldots$

In $\Delta \in \mathcal{Q}_i$ is defined a variable $z_{\Delta}(x)$ and $E(z_{\Delta}(x)^2) = \frac{1}{2}$

Field at a point x is $\varphi_x = \sum_{i=0}^{N} z_{\Delta_i}(x) 2^{\frac{1}{2}(d-2)i}$. Models:

- 0) Ising h. fields: $z_{\Delta}(x) = z_{\Delta} = \pm 1$, x-indep. in each Δ : $P(d\mathbf{z}) = \prod_{\Delta} \sum_{z_D = \pm 1}$
- 1) Bernoulli h. fields: $z_{\Delta}(x)=z_{\Delta}=\pm 1$, x-indep. in each Δ : $P(d\mathbf{z})=\prod_{\Delta}\frac{\mathrm{e}^{-\frac{1}{2}z_{\Delta}^{2}}dz_{\Delta}}{2\pi}$
- 2) Markov h. fields: $z_{\Delta}(x)$ x-indep. in each Δ

$$Z_N^{-1} \exp{-\frac{\beta}{2} \left[\sum_{\Delta,\Delta' \in Q_i}^{N^*} (z_{\Delta} - z_{\Delta'})^2 + \alpha^2 \sum_{\Delta \in Q_i} z_{\Delta}^2 \right]}$$

 \sum^* over i & n.n. $\Delta, \Delta' \in Q_i$; $\beta, \alpha > 0$ fixed s.t. $\langle z_{\Delta}^2 \rangle$ is $\frac{1}{2}$.

(3) Euclidean h. fields: Gaussian with covariance

$$C_{x,y}^{\leq N} = \sum_{i=0}^{N} 2^{(d-2)i} C_{2^i x, 2^i y}^0$$
, i.e. $C_k^{\leq N} = \frac{1}{1+k^2} - \frac{1}{2^N + k^2}$

$$C_{x,y}^{(0)} = \frac{1}{(2\pi)^d} \int \frac{3}{(1+k^2)(4+k^2)} e^{ik(x-y)} d^d k$$

In all cases $\varphi_X^{(\leq N)}$ can be large $\langle (\varphi_X^{(\leq N)})^2 \rangle = c \sum_{i=0}^N 2^{(d-2)i}$. In all cases $\varphi_X^i = c2^{\frac{1}{2}(d-2)i}\frac{z_x^i+\sqrt{\Gamma_i}X_x^{i-1}}{\sqrt{1+\Gamma_i}}$, $\Gamma_i = \sum_{n=0}^{i-1}\frac{2^{(d-2)n}}{2^{(d-2)i}}$, and z^i, X^i are constant in each $\Delta \in Q_i$ (in models 1,2) or almost constant in model 3, *i.e.* are ε -Hölder c.

Why Hölder: let $w=\frac{z_{y}^{0}-z_{y}^{0}}{|x-y|^{\varepsilon}}=\int\widehat{z}_{k}^{0}\frac{(e^{ikx}-e^{iky})}{|x-y|^{\varepsilon}}d^{d}k$; hence $\langle w^{2}\rangle=\int\frac{3}{(1+k^{2})(4+k^{2})}k^{2\varepsilon}d^{d}k=c<\infty$ implies, if $2\varepsilon+d<4$ and x,y are in the same $\Delta\in Q_{0}$ (or 'close'):

$$\varepsilon < 1$$
, if $d = 2$ $\varepsilon < \frac{1}{2}$ if $d = 3$

In all cases z^i, z^j are independently distributed for $i \neq j$ and 3 at each scale correlation decays exponentially on the respective scale, if present at all (in model 1 is absent).

Detailed UV-analysis deals with upper and lower bounds for $\int e^{\int_I : (\varphi_x^{\leq N})^4 : d^d x}$, where I is the unit box. And it relies on

Lemma: Let Λ be a cube and $\Lambda_1, \Lambda_2, \ldots$ be unit cubes paving Λ . Let $\alpha_1 \in C^{\infty}(R^d)$, with support in Λ_1 and let $\alpha_j(x) = \alpha_1(x - \xi_j)$ where ξ_j is the center of Λ_j . Then if $s < 4 - \frac{d}{2}$, $\exists c_1, c_2$, Λ -independent constants, such that:

$$\mu_{A}(\varphi \mid \mathit{max}_{j} \| \alpha_{j} \varphi \|_{\mathit{H}_{s}(R^{d})} \leq B) \geq e^{-c_{1}e^{-c_{2}B^{2}}|\Lambda|}$$

and if s=integer, $s+\varepsilon<2-\frac{d}{2}$ the probability that the Hölder C_ε norm $\|\alpha_j\varphi\|_{C_\varepsilon}< B$ is

$$\mu_{A}(\max_{j} \|\alpha_{j}\varphi\|_{C_{\varepsilon}} < B, \forall j) \ge e^{-c_{1}e^{-c_{2}}B^{2}|\Lambda|}$$

All examples have the properties:

4

- a) almost independently valued on each scale h,
- b) almost constant at scale h, by the lemma above
- c) for all $\Delta \in Q_N$ (up to large fluctuations):

$$V_{\Delta} = \int_{\Delta} \lambda : (\varphi_x^{\leq N})^4 : 2^{-dN} dx = O(\lambda 2^{4\frac{(d-2)}{2}} 2^{-dN}) = \mathbf{0}(\lambda 2^{(d-4)N})$$

Therefore suggestion is to study, if d = 2, 3:

$$\int e^{\lambda \int_I : (\varphi_x^{\leq N})^4 : dx} = \int e^{-\lambda \sum_{\Delta \in Q_N} 2^{(d-4)N} H_4(\frac{z_\Delta^N + \sqrt{\Gamma_N} x_\Delta^{N-1}}{\sqrt{1 + \Gamma_N}})}$$

simply by a careful perturbative evaluation of the integral over z_{Δ} distinguishing the cases in which $|z_{\Delta}|, |X_{\Delta}|$ are respectively above or below a treshold

$$B_{\Delta} = B(1+N)^p(\log(e+\lambda^{-1}))^2, \Delta \in Q^N$$

for
$$p = 4.2$$
.

The procedure is the same in the above models: in Euclidean case Hölder continuity lemma essentially reduces the problem to the Markov or even Bernoulli models.

The lemma was proved in [1] and is a legacy of Benfatto, whose contribution was essential as well as the idea to introduce and use it in the work on the Markov case [2].

The d=2 Bernoulli field contains the key ideas:

$$\begin{split} \varphi_{\mathbf{x}}^{\textit{N}} &= \sum_{\Delta\ni\mathbf{x},\Delta\in\overline{Q}_i} \sqrt{2\gamma_i} \mathbf{z}_{\Delta}^{\textit{N}}, \ \gamma_i = 1, \ \mathcal{E}((\varphi_{\mathbf{x}}^{\textit{N}})^2) = \sum_{\Delta\ni\mathbf{x} \atop \Delta\in\overline{Q}_i} 1 = \textit{N}+1 \\ \varphi_{\mathbf{x}}^{\textit{N}} &= \sqrt{\textit{N}+1} \mathbf{X}_{\Delta}^{\textit{N}} = \sqrt{\textit{N}+1} \, \frac{\mathbf{z}_{\Delta}^{\textit{N}} + \sqrt{\textit{N}} \mathbf{X}_{\Delta'}^{\textit{N}-1}}{\sqrt{1+\textit{N}}}, \ \int \mathbf{e}^{\lambda \int_{\mathbf{i}}:(\varphi_{\mathbf{x}}^{\textit{N}})^4:\,\mathrm{d}\mathbf{x}} \\ &: (\varphi_{\mathbf{x}}^{\textit{N}})^4:= (1+\textit{N})^2 \mathsf{H}_4(\frac{\mathbf{z}_{\Delta}^{\textit{N}} + \sqrt{\textit{N}} \mathbf{X}_{\Delta'}^{\textit{N}-1}}{\sqrt{1+\textit{N}}}) \end{split}$$

$$\mathbf{V_{I}^{N}} = \lambda \sum_{\mathbf{Z} = \mathbf{Z}} (1+\mathbf{N})^{2} \mathbf{H_{4}} (\frac{\mathbf{z_{\Delta}} + \sqrt{\mathbf{N}} \mathbf{X_{\Delta'}}}{\sqrt{1+\mathbf{N}}}) \, \sigma_{\mathbf{N}}, \qquad \sigma_{\mathbf{N}} = |\Delta| = \mathbf{2^{-2N}}$$

'Small fields' integration:

$$\int e^{\boldsymbol{V}_{\boldsymbol{I}}^{\boldsymbol{N}}} \chi^{\boldsymbol{N}}, \quad \chi^{\boldsymbol{N}} = \prod_{k=0}^{\boldsymbol{N}} \prod_{\boldsymbol{\Delta} \in \boldsymbol{Q}_{k}} \chi_{\boldsymbol{\Delta}}(|\boldsymbol{X}_{\boldsymbol{\Delta}}^{\boldsymbol{N}}| < \boldsymbol{B}_{k})$$

 $\mathsf{B}_{\mathsf{k}} = (1+\mathsf{k})^{\mathsf{4}}\mathsf{B}_{\mathsf{0}}, \ \mathsf{B}_{\mathsf{0}} = (1+\log\lambda)^{\mathsf{2}}\mathsf{B}, \ \mathsf{B}_{\mathsf{0}} > 3$

Recursively: $\widetilde{\mathbf{V}}_{\mathbf{I}}^{\mathbf{N}} = \mathbf{V}_{\mathbf{I}}^{\mathbf{N}}, \ \widetilde{\mathbf{V}}_{\mathbf{I}}^{(\mathbf{N}-\mathbf{k})} = \mathcal{E}_{\mathbf{N}-\mathbf{k}+\mathbf{1}}(\mathbf{V}_{\mathbf{I}}^{(\mathbf{N}-\mathbf{k}+\mathbf{1})}), \ \widetilde{V}_{\mathbf{I}}^{-1} = 0$

$$\int e^{V_i^N} P^N(dX^N) \geq \int e^{V_i^N} \chi^N P^N(dX^N) = \int \chi^{N-1} P^{N-1}(dX^{N-1}) \cdot$$

$$\prod_{\boldsymbol{\Delta} \in \Omega_{11}} \Big(\int \chi(|\frac{\boldsymbol{z}_{\boldsymbol{\Delta}} + \sqrt{N}\boldsymbol{X}_{\boldsymbol{\Delta}'}^{N-1}}{\sqrt{N+1}}| < \boldsymbol{B}_{\boldsymbol{N}} \Big) e^{-\lambda \sigma_{\boldsymbol{N}} (1+\boldsymbol{N})^{2} \boldsymbol{H}_{4} (\frac{\boldsymbol{z}_{\boldsymbol{\Delta}} + \sqrt{N}\boldsymbol{X}_{\boldsymbol{\Delta}'}}{\sqrt{N+1}})} \frac{e^{-\frac{\boldsymbol{z}_{\boldsymbol{\Delta}}^{2}}{2}} d\boldsymbol{z}_{\boldsymbol{\Delta}}}{\sqrt{\pi}} \Big)$$

Pfi4, Roma 15-17 Sept. 2025

Integrals over z_{Δ} 's independent: single Δ is computed $O(\lambda^2)$:

$$\begin{split} &1 - \lambda \sigma_{\text{N}} (1+\text{N})^2 \int \text{H}_4 \big(\frac{z + \sqrt{\text{N}} \textbf{X}_{\Delta'}}{\sqrt{\text{N}+1}}\big) \frac{e^{-z^2} dz}{\sqrt{\pi}} \\ &+ O\big(\lambda^2 \sigma_{\text{N}}^2 \textbf{B}_0^8 \textbf{N}^{18} e^{\frac{3}{2} \lambda \textbf{N}^2 \sigma_{\text{N}}}\big) \\ &= 1 - \lambda \sigma_{\text{N}} \textbf{N}^2 \textbf{H}_4 (\textbf{X}_{\Delta'}) + O\big(\lambda^2 (\log \lambda)^8 e^{c\lambda} \textbf{N}^{20} \sigma_{\text{N}}^2\big) \\ &= e^{-\lambda \sigma_{\text{N}} \textbf{N}^2 \textbf{H}_4 (\textbf{X}_{\Delta'}) + O(\lambda^2 (\log \lambda)^2 e^{c\lambda} \textbf{N}^{20} \sigma_{\text{N}}^2\big)} \end{split}$$

By $4\sigma_N N^2 = \sigma_{N-1} (1 + (N-1))^2$, and $V^{-1} = 0$, recompose as

$$\int e^{V_I^N} \chi^N P(dz^N) \ge e^{V_I^{N-1}} e^{\lambda^2 (\log \lambda)^2 e^{c\lambda} N^{20} \sigma_N^2 2^{2N} I}$$
$$\ge e^{-\lambda^2 \varepsilon(N,\lambda) \sigma_N^2 2^{2N} |I|}$$

i.e. each $\Delta \in Q_N$ contributes $\lambda^2 \varepsilon(N, \lambda) \sigma_N^2$, $\varepsilon(N, \lambda) = (\log \lambda)^2 e^{c\lambda} N^{20}$; hence, by $\sigma_N^2 2^{2N} = 2^{-2N}$:

$$\int e^{V_i^N} \prod_{i=0}^N \chi^i(z^i) P(dz^i) \geq e^{-\sum_{i=0}^N \lambda^2 \varepsilon(i,\lambda) 2^{-2i}|I|}$$

Now upper bound in view of the application to Markov fields.

Let
$$\chi_D^i = \prod_{\Delta \subset D} \chi(|X_\Delta^i| > B_i), \widehat{\chi}_D^i = \prod_{\Delta \subset D} \chi(|X_\Delta^i| < B_i)$$
 s.t. $\sum_D e^{V^N} \chi_D^N \widehat{\chi}_{D^c}^N \le \sum_D e^{V_{D^c}^N} \chi_D^N \widehat{\chi}_{D^c}^N$ or even, integrating:

$$\leq \sum_{D^{N-1}} \sum_{D} \int e^{V^N_{D^c} + V^{N-1}_{D/D_{N-1}}} \chi^N_D \widehat{\chi}^N_{D^c} \chi^{N-1}_{D^{N-1}} \widehat{\chi}^{N-1}_{D^{N-1,c}}$$

because $|X_{\Delta}| > B_N \gg 3$ implies $V_{\Delta}(X_{\Delta}) \gg 0$ and X_{Δ} is so large in D/D_{N-1} that, even replacing $V^N(D/D_{N-1})$ with $V^{N-1}(D/D_{N-1})$, yields an upper bound.

By the lower bound analysis

$$\sum_{D} \int e^{V_{D^c}^N} \widehat{\chi}_{D^c}^N \chi_D^N \leq \sum_{D^{N-1}} \int e^{V_{D^{N-1},c}^{N-1} + \varepsilon(N,\lambda) 2^{-2N}|I|} \chi_{D^{N-1}}^{N-1} \widehat{\chi}_{D^{N-1},c}^{N-1}$$

as:

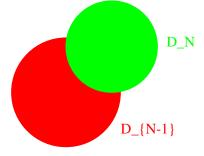


Figure: Green=large $|X^N| > B_N$, Red=large $|X^{N-1}| > B_{N-1}$.

Replace $V_{D_N^c}^N$ with $V_{D_N^c}^{N-1}+V_{D_{N-1}/D_N}^{N-1}=V_{D_{N-1}^c}^{N-1}$: here enters the positivity of $H_4(x)$ for x>2.

$$\int e^{\boldsymbol{V}_{I}^{\boldsymbol{N}}} \chi^{\boldsymbol{N}}(\boldsymbol{D}) \widehat{\chi}^{\boldsymbol{N}}(\boldsymbol{D}^{\boldsymbol{c}}) \leq e^{\boldsymbol{V}_{I}^{\boldsymbol{N}-1} + \lambda^{2} \varepsilon(\boldsymbol{N},\lambda) 2^{-2\boldsymbol{N}} |\boldsymbol{I}|} \chi^{\boldsymbol{N}-1}(\boldsymbol{D})$$

so that the $E_+ = \lambda^2 \sum_N \varepsilon(N, \lambda) 2^{-2N} |I|$ is an upper bound.

Analysis to higher order: no extra work needed for

$$\mathbf{E}_{\pm} = \sum_{\mathbf{k}=\mathbf{2}}^{\mathbf{t}} \lambda^{\mathbf{t}} \mathbf{S}_{\mathbf{t}} |\mathbf{I}| \pm \lambda^{\mathbf{t}+1} \sum_{\mathbf{N}} \varepsilon_{\mathbf{t}}(\mathbf{N}, \lambda) \mathbf{2}^{-\mathbf{N}} |\mathbf{I}|$$

where S_t are coefficients predicted by a perturbation analysis (finite to all orders as the theory is "superrenormalizable") and $\varepsilon_t(N,\lambda) = (\log \lambda)^2 e^{c_t \lambda} N^{20t}$;

In Markov models explicit integration over $z_{\Delta}, \Delta \in Q_N$ can be replaced by the cluster expansion or by an argument of probability theory to control exponentially decaying correlations z_{Δ}, z_{Δ}' ,

[[3] with cluster expansion or [4] with a more standard probabilistic method].

The lower bound amounts to estimating, in presence of the $\chi^N = \{\varphi | |z_\Delta + X_{\Delta'}| < B_N|, |X_{\Delta'}| < B_{N-1} \}$ to a finite order in λ : $W(I) = \int \chi^N e^{\sum_{\Delta \in Q_N} \lambda \sigma_N H_4(\frac{z_\Delta + X_{\Delta'}}{2})} = \int \prod_\Delta w(\Delta)$. Then:

$$W(I) = \int \prod_{\Delta \in Q_N} \{(w(\Delta) - 1) + 1\} = \sum_{\mathbf{m}} \sum_{\mathbf{R_1, R_2, \dots, R_m}} \mathbf{K}(\mathbf{R_1}) \dots \mathbf{K}(\mathbf{R_m})$$
(*)

where R_j is a collection of $\Delta's$ forming a connected set R_j , and $R_i \cap R_j = \emptyset$ and

$$|K(R)| \leq (\lambda \sigma_N e^{O(\lambda N^{20} \sigma_N)})^{|R|}$$

This is a "short range hard core interaction" between polymers R_i and a typical quantity to compute is partition function to show validity of its perturbation expansion.

In Euclidean models the Hölder continuity on scale N Lemma, allows treating the problem as in Markov cases, [2].

The Ising hierarchy $(z_x^N = z_\Delta^N = \pm 1, \forall x \in \Delta \in Q^N)$:

$$\varphi_x^{\leq N} = (1+N) \frac{z_x^N + N X_x^{N-1}}{\sqrt{1+N}}, \quad d = 2$$
$$\varphi_x^{\leq N} = 2^N \frac{z_x^N + X_x^{N-1}}{2}, \quad d = 3$$

is an easy warm-up exercise (at least in the d=2 case)

The Euclidean sine-gordon model can be treated along the same lines and it is somewhat simpler, [5].

Quoted references

G. Benfatto, G. Gallavotti, and F. Nicoló.

Elliptic equations and gaussian processes. Journal of Functional Analysis, 36:343-400, 1980.

G. Benfatto, M. Cassandro, G. Gallavotti, F. Nicolò, E. Olivieri, E. Presutti, and E. Scacciatelli.

Ultraviolet stability in euclidean scalar field theories. Communications in Mathematical Physics, 71:95-130, 1980.

G. Gallavotti.

On the ultraviolet stability in Statistical Mechanics and field theory.

Annali di Matematica pura ed applicata, CXX:1-23, 1979.

G. Benfatto, M. Cassandro, G. Gallavotti, F. Nicolò, E. Olivieri, E. Presutti, and E. Scacciatelli.

Some probabilistic techniques in field theory. Communications in Mathematical Physics, 59:143-166, 1978.

G. Gallavotti.

Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods. Reviews of Modern Physics, 57:471-562, 1985.

Pfi4, Roma 15-17 Sept. 2025

12/12

Proceed to the upper bound starting from the identity:

$$1 = \sum_{\substack{\Delta_i \subset Q_i \\ i = 0, \dots, N}} \prod_{i = 0}^N \left\{ \prod_{\Delta \in D_i} \chi(|\textbf{X}_{\Delta}| > \textbf{B}_i) \prod_{\Delta \not \in D_i} \chi(|\textbf{X}_{\Delta}| < \textbf{B}_i) \right\}$$

and set: $V(X_{\Delta})=0, \Delta\in Q_N, \ \mathrm{if}\ |X_{\Delta}|>B_N$ (as $H_4(x)>c\,x^4, \ \mathrm{if}\ x>3$). The integral to compute is then

$$\sum_{\mathbf{D_N}\subset\mathbf{Q_N}}\int e^{-\lambda\sigma_N\sum_{\Delta\in D_N}H_4(\frac{z_{\Delta}+\sqrt{N}X_{\Delta'}}{\sqrt{1+N}})}\prod_{\Delta\in D_N}\chi(|\frac{|z_{\Delta}+\sqrt{N}X_{\Delta'}|}{\sqrt{N}}< B_N)$$

$$\prod_{\mathbf{X}}\chi(|\frac{|\mathbf{z_{\Delta}}+\sqrt{\mathbf{N}}\mathbf{X_{\Delta'}}|}{\sqrt{\mathbf{N}}}> \mathbf{B_N})\frac{e^{-\mathbf{z_{\Delta}^2}}d\mathbf{z_{\Delta}}}{\sqrt{\pi}}$$

each $\Delta' \in Q_{N-1}$ contains $\mathbf{j}_{\mathbf{D}'} = \mathbf{0}, \mathbf{1}, \ldots, \mathbf{4} \ \Delta \in D_N$ with $|\frac{|\mathbf{z}_{\Delta} + \sqrt{N}\mathbf{X}'_{\Delta}|}{\sqrt{N}} < \mathbf{B}_{\mathbf{N}}|$. Let $D' \subset Q_{N-1}$ such that each cube in D' contains at least one $\Delta \in D_N$ with $j_{\Delta} < 4$ (*i.e.* a Δ with $|X_{\Delta}| > B_N$).

Hence the integral is, if $\{j_{\Delta}\}_{\Delta \in D_N}$

$$P(B_N, D') \prod_{\Delta' \in D'} \left(e^{j_{\Delta'} \frac{1}{4} E_{-}(\lambda, B_N) + \lambda \sigma_N^2 B_N^8 e^{c\lambda}} \right)$$

where $P(B_N, D')$ = probability that $j_{\Delta} > 0, \forall \Delta \in D'$.

By the lower bound the product is $\leq e^{+\lambda^2(\log \lambda)^2 \varepsilon(N,B_N)2^{-N}|I|}$.

The number of $\Delta \in Q^{n-1}$ labeled by $j_{\Delta} > 0$ is $4^{2^{2^i}}$ s. t.:

$$\sum_{D'} P(B_N, D') \leq \sum_{\neq D' \subset Q_{N-1}} e^{c - B_N^2 |D'|} \leq (1 + e^{c - B_N^2})^{2^2 N} |I|$$

Iterating over N an upper bound is

$$+E_{-}(\lambda)|I|+\sum_{N=0}^{\infty}e^{(c-B_{N}^{2})2^{2N}|I|}=+E_{-}(\lambda)I=O(\lambda^{\infty})$$

(because $B_N = (1 + N)^4 (\log \lambda)^2 B_0$).