Nome e Cognome:	Docente:	

I Prova di Esonero del corso di Fisica Nucleare e Subnucleare I (A.A. 2011-2012)

18 Aprile 2012 ore 11

Problema 1:

Il mesone K^- può essere prodotto da un fascio di pioni π^- su un bersaglio fisso nella reazione i) $\pi^- + p \rightarrow X^+ + K^-$.

I K⁻ così prodotti interagiscono poi su un bersaglio di idrogeno liquido producendo un barione Ξ - attraverso la reazione ii) K⁻ + p \rightarrow Ξ - + K⁺ + π ⁰.

Calcolare la energia cinetica di soglia T del K⁻ in grado di produrre un Ξ - dalla reazione ii) e l'impulso minimo del π - necessario per produrre nella reazione i) un K⁻ di energia cinetica pari a T. Si consideri il π - relativistico (E=pc).

 $[M_p = 938 \text{ MeV/c}^2, M_{\pi^-} = 140 \text{ MeV/c}^2, M_X = 1400 \text{ MeV/c}^2, M_{K^{+/-}} = 494 \text{ MeV/c}^2, M_{\pi^0} = 135 \text{ MeV/c}^2, M_{\Xi^-} = 1530 \text{ MeV/c}^2]$

Problema 2:

Un rivelatore per neutrini solari installato ai Laboratori Nazionali del Gran Sasso è costituito da 30 t di Gallio naturale. I neutrini sono rivelati attraverso la reazione $v + Ga^{71} \rightarrow Ge^{71} + e^{-}$. Calcolare quante reazioni vengono prodotte al giorno facendo le seguenti assunzioni:

- 1) la potenza totale emessa sotto forma di neutrini di energia superiore alla soglia della reazione è 4.7 10³⁷ MeV/s;
- 2) l'energia media dei neutrini sopra soglia è 0.4 MeV;
- 3) la distanza Terra-Sole è di 150 milioni di km;
- 4) la sezione d'urto media dei neutrini "attivi" per nuclei di Ga^{71} è $\sigma = 3.1~10^{-45}~cm^2$;
- 5) il peso atomico del Gallio naturale è 69.7, mentre l'abbondanza isotopica del Ga⁷¹ è $\approx 40\%$.