Soluzione I Bonus per lo scritto del corso di Fisica Nucleare e Subnucleare I (A.A. 2011-2012)

11 Aprile 2012 ore 11, Aule M. Conversi e N. Cabibbo

Problema 1:

(c=1;
$$E_e = 20 \text{ GeV}$$
; $E_p = 200 \text{ GeV}$; $\Theta = 10^\circ = 0.1745 \text{ rad}$;)

1) L'energia totale nel centro di massa è la massa invariante del sistema \sqrt{s} :

$$E_{CM} = \sqrt{s} = \sqrt{P_{TOT}^2} = \sqrt{M_e^2 + M_p^2 + 2E_e E_p - 2p_e p_p \cos(\pi - \Theta)} \approx$$

$$\approx \sqrt{2E_e E_p \cdot [1 - \cos(\pi - \Theta)]} = 154 \text{ GeV}$$

2) Per un urto con protone fisso nel laboratorio si ha:

$$154 GeV = \sqrt{s} = \sqrt{M_e^2 + M_p^2 + 2E_e M_p} \approx \sqrt{2E_e M_p}$$

$$E_{Lab} = E_e + M_p \approx E_e \approx \frac{s}{2M_p} = 12600 \ GeV$$

Problema 2:

Il numero di protoni nel bersaglio è: $N_b = \rho V N_A = 5.34 \times 10^{24}$

$$\frac{dN_R}{dt} = \Phi N_b \sigma = 2 \times 10^3 cm^{-2} s^{-1} \times 5.34 \times 10^{24} \times 4 \times 10^{-26} cm^2 = 427 s^{-1}$$

In seguito a ogni reazione vengono prodotti 2 γ , quindi vengono emessi 855 γ al secondo (845 se si considera il B.R.($\pi^0 \rightarrow 2\gamma$)=98.8%)