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Abstract 
 
Anomalous suppression of J/Ψ in the collisions of Heavy Nuclei is considered to provide reliable 
indications for the formation of a fire-ball of deconfined quarks and gluons. After a brief review of 
hadron thermodynamics at high energy, I illustrate recent calculations of J/Ψ absorption in hadronic 
matter and the ensuing analysis of the data obtained at the CERN SPS by the NA50 Collaboration. 
Assuming the existence of a limiting hadron temperature, as indicated by the hadron level spectrum, one 
concludes that normal hadronic matter cannot explain the observed suppression in higher centrality 
collisions. 
 
Introduction  
 

Confinement means that the heavy quarks in a c-cbar pair are bound by an 
asymptotically constant attractive force (i.e. a linearly rising potential). This is what 
happens in normal vacuum. 

Several theoretical arguments suggest that by increasing the temperature, normal 
vacuum gives rise to a new phase where quarks and gluons are not confined in hadron 
bags. In the deconfined phase, the attractive force between c and c-bar is screened by 
the Quark-Gluon Plasma (QGP). Charmonia bound states “melt” as temperature rises, 
starting from the less bound higher resonances down to the more deeply bound lower 
states. Thus, te onset of  J/Ψ suppression in relativistic heavy ion collisions  would 
signal the formation of QGP, a suggestion originally made by T. Matsui and H. Satz1.  

The method can work, however, only if we are able to control all other sources of  
J/Ψ absorption in heavy ion collisions, both nuclear and hadronic 2. To this aim, several 
calculations of the J/Ψ  dissociation cross-sections have been performed, e.g. for the 
process: 
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J/ Ψ dissociation by hadrons was originally believed to be very small, on the basis of 

perturbative QCD calculations, but more recent studies have shown its importance.  



I will report on the results of a recent calculation by our group3 and apply them to 
the NA50 data obtained at the SPS.  

The present Lectures give a “bottom  up” presentation4, going (slowly) from low to 
high temperature. The 1st lecture contains an elementary introduction to the basic 
concepts and in the 2nd lecture I shall present the results of our calculations and their 
application to the data taken at the CERN SPS by the NA50 Collaboration5. 

The main issue I will address is: did quark-gluon plasma show up at the SPS? 
On the basis of our results, I conclude: yes, most likely !! 
But we need to know better...and to study QGP more, at RHIC and LHC. 
Before closing the Introduction, I would like to express my gratitude to U. Heinz, U. 

Wiedemann and F. Becattini for interesting discussions. The help of F. Becattini in 
constructing the 2004 hadron level spectrum is gratefully acknowledged. Finally, I 
want to thank my younger collaborators F. Piccinini, A. Polosa and V. Riquer, who 
introduced me to the problem of J/Ψ dissociation and shared the enthusiasm of 
exploring the new (for us) world of heavy ion collisions. 

 
 
 



LECTURE 1 
 

Summary 
1. A simple view of the collisions 
2. Does the fireball thermalise? 
3. Hadron gas 
4. Hagedorn gas, the phase transition from below 
5. Deconfined Quarks and Gluons 
6. Debye screening 
7. Summing up 

 
 

1. A simple view of the collisions 
 

Snapshots of the high-energy collision of two (equal) heavy ions, taken in the c.o.m. 
frame before and after the collision, would look like the cartoons in Fig.1. The center of 
mass energies of the projectiles are 8.5 GeV/A at the SPS, 100 GeV/A at RHIC and 
will be 2.5 TeV/A at the LHC. 
Nuclei are compressed in the direction of flight by the relativistic contraction, the 
closest distance of approach (impact parameter) is indicated by b. 
The value of b in each collision can be measured by observing the energy carried by the 

fragment of nucleus which has 
gone on unperturbed, represented 
with a solid shape in Fig. 1. In the 
SPS, fixed target, experiments the 
unperturbed fragment of the 
projectile nucleus goes forward and 
its energy is measured in NA50 by 
a Zero Degree Calorimeter. The 
fragment has the same Energy/A 
ratio as the original projectile, thus 
we can get A from the energy and 
deduce its size, i.e. b, from nuclear 
models (see below).  

The overlap region of the two 
nuclei after collision is represented 
with a fuzzy shape: nucleons are 
now unbound and mixed with the 
forward and backward fragments of 
individual collisions.  

Fig. 1.1. Snapshot of a relativistic heavy ion  
collision, center of mass frame. 
 
Hadrons produced in the central region of the rapidity plateau form a fireball which 

expands rapidly under the pressure exerted by the momentum of the inner particles.. 
The central plateau is separated from the fragmentation region by a rapidity interval 

before..
. 

after.
.. 

time 



which increases with the c.o.m. energy. Therefore, the central region is more and more 
baryon number free. The fireball starts as a state of dense hadronic matter with a 
transverse size which we denote by l (l =2R-b where R is the radius of each nucleus).  

Shortly after the collision, at a time τ0 = 0.1-1 fm/c, the energy density of the fireball 
for central collsions, b=0, can be estimated in terms of the particles produced in 
elementary nucleon-nucleon collision6: 
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here A/S is the average baryon number surface density of the incoming nuclei while the 
energy per unit rapidity (per nucleon-nucleon collision), can be estimated at the SPS 
according to:   
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For central Pb-Pb collision, one has: 
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For collisions with a generic impact parameter, the baryon density per unit surface is 
reduced by a geometrical factor: 
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where g(b) is the nucleon number density per unit area, averaged over the region of 
overlap of the colliding nuclei: 
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For Pb-Pb collisions, R= 6 fm and g(b) decreases from 1 to about 0.6 when b goes from 
0 (central collisions) to b=8 fm. The latter value corresponds to a transverse diameter of 
the fireball: l=2R-b=4 fm where the interestingly central collisions begin, as we shall 
see in Lecture 2. From the estimates above, we obtain 
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2. Does the fireball thermalise? 
 
Particles produced in the primary collisions are mainly pions, with an average 

energy of 400 MeV each. If the density of the early fireball is sufficiently high, pions 
will scatter many times off each other and relax to a state with some definite 
temperature, T. For τ0 < 1fm/c and l = 4fm, we can estimate an average initial density: 
ρ > 4 fm-3. Taking a typical strong interaction cross section: σ ≅ 40mb = 4fm-2, we get 
the mean free path: 
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λ is much smaller than the size of the fireball produced (a few Fermi). Thermal 
equilibrium is a reasonable guess. 

Some words of caution are appropriate here. Pions at zero momentum have a 
vanishing interaction since they are the quasi-Goldstone-bosons of chiral symmetry. 
Calculations based on chiral perturbation theory provide cross sections that could be 
much smaller than what estimated above, and predict no thermalization at all7. 
However, if the original particles have an average energy E= 400 MeV, with random 
distributed directions the average center of mass energy in the pion-pion system is 
about 560MeV (<s> = 2E2) and are rather far from the soft pion limit for Chiral 
perturbation Theory to be applicable. As an alternative, we may compute the P-wave 
pion-pion cross section using a Breit-Wigner formula for the ρ(770), to find 
σρ(560MeV) ~ 33 mb. If we add an S-wave resonance, σ(480) with Γ~ 300 MeV, as 
suggested by recent data8, we obtain a total cross section of about 50 mb, in line with 
the previous estimate.  

What about experiment? The hadrons that are observed originate at a later time, the 
so-called freeze-out time, when the expansion of the fireball has reduced the density 
such that the hadrons do not interact anymore among themselves. Coherently with the 
thermalization assumption, hadrons at freeze-out exibit a thermal distribution9, with 
T=170-180 MeV.  

 
 
Fig. 2.1 Hadron abundances and thermdynamical fits at RHIC. 



 
 
3. Hadron gas 
 

At thermal equilibrium and low energies, we describe the fireball as a gas made by 
hadron resonances. Each particle species is treated as a free particle. Interactions are 
rather introduced in the form of  resonances which appear at increasing energies: we 
have pions only at low energy, then kaons, etas, (i.e. the strange quark flavour) then ρ, 
ω, φ,  K*, etc.  (see e.g. Ref.[10]).  

The thermodynamical partition function, Z is easily obtained if we know the 
hadronic gas composition, i.e. the density of hadronic level as a function of the mass: 
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(β=1/T, µ=chemical potential, k=Boltzmann’s constant=1) and Nch represents the 
charge multiplicity (3 for pions). For simplicity, in what follows we assume vanishing 
chemical potential. This is appropriate for the fireball produced in the central region of 
very high energy collisions. It is a rough approximation at SPS energies, getting better 
and better at RICH and LHC. 

In the Boltzmann limit all exponents are <<1, so that: lnz ≈ e+µe-βE. The energy 
density of the hadron gas and the average species abundances are obtained from the 
partition function as usual: 

 
 It is convenient to introduce the ratio of the energy density to that of a gas made by 

one specie of spin zero, massless bosons. We call Neff the energy density thus 
normalized: 
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Justifying its name, Neff gives the number of degrees of freedom that are “active” at 

temperature T. At low temperatures, of the order of 150 MeV, one would expect only 
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pions, namely Neff~3. However, in spite of higher mass, higher resonances contribute 
significantly to the energy density even at these temperatures, because of their 
increasing spin and charge multiplicities, as we discuss in the next Section.  
 
 

4. Hagedorn gas: the phase transition from below 
 

The central ingredient of the fireball thermodynamics is the density of the hadron 
levels, ρ(m). Of course, we are unable to compute it from first principles, at present.  

Repeating the exercise found in Ref.[10], I report in Fig. 4.1, black solid curve, a  
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 4.1. Hadron level density functions (see text). In ordinates, the values of log10[ρ(m)] are 
reported, with m in GeV and ρ in GeV-1. For the meaning of the different curves, see text. 
 
determination of the “experimental” level density, ρ2004(m) corresponding to the hadron 
levels listed in the Particle Data Book of 2004. Pions are not included. For the other 
particles, each delta-function in eq.(3.2) is smeared out in a gaussian to get a regular 
behaviour: 
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with 200 MeV resolution. The level density ρ2004 drops for masses above 
approximately 1.5 GeV. This is probably because we are unable to identify highly 
excited resonances with increasing angular momentum and increasingly large widhts. 
However, in the region where we can reasonably assume that we know almost all the 
hadronic levels, the trend supports an exponentially increasing density, as predicted by 



Hagedorn, in the prehistory of modern hadron theory, on the basis of his  bootstrap 
principle. The exponential rise of ρ(m)  is supported by hadron models based on quarks 
(e.g. the bag model). 

The blue line in Fug. 4.1 was obtained in ref.[10] by a fit of the smeared data from 
the 1996 Particle Data Group with a theoretical level density of the form:  
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The power -3/2 of the pre-exponential factor is predicted by Hagedorn’s “bootstrap 

principle” and it fits well the data. The resulting parameters are:  
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The value of TH thus obtained is in agreement with the original determination by 
Hagedorn, which was based on the pT cutoff observed in the distribution of the pions 
produced in hadronic collisions. However, TH is too low to comply with the 
temperatures obtained from hadronic distribution at freeze-out, which we have seen to 
be in the range 170-180 MeV, and also with the lattics QCD results (see below) which 
indicate a transition temperature around 170 MeV.  

However, TH is not so well determined by the mass distribution of the observed 
resonances, due to the falling of the black curve. We can obtain a good fit with a larger 
temperature by readjusting the coefficients of the pre-exponential terms. The purple 
curve shows the result[3] for: 
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The exponentially rising spectrum leads to a limiting temperature for the hadronic 
matter, equal to TH.  

Intuitively, this can be understood as follows. An increase of the energy of the gas 
gives rise to two competing effects: increase of the average energy of the particles 
present in the gas, thereby increasing the temperature, increase of the number of species 
present in the gas, by creating heavier particles. With a spectrum limited in mass, the 
first mechanisms takes over at large temperatures and leads to the T4 behaviour of the 
energy of a gas made by a fixed number of species of relativistic particles. If the level 
density increases exponentially, however, the second mechanisms dominates more and 
more and at some point it will be impossible to increase the temperature further, since 
any newly provided energy is spent in creating new particles.  

The argument is well exemplified by Fig. 4.2. The lowest red curve gives the 
contributions of pions alone, flattening at the value 3. The next higher, red, curve gives 
Neff for a hadron gas made by the pseudoscalar and vector nonets. Here, ρ(770) and 
ω(770)  make a sizeable contributon, nothwitstanding that the values of their masses 
are quite larger than T. Still higher is Neff computed with ρ2004 (green curve), while, 
finally the blue curve represents Neff for the Hagedorn gas with the parameters given in 
eq.(4.3), diverging at TH=180 MeV.  



 
 
Fig. 4.2. The behavior of Neff, Eq. ( 3.3), vs. temperature (GeV) and different hadron gases. 

Red lowest curve: pions; red higher curve: pseudoscalar and vector mesons; green curve: all 
particles in Particle Data Group 2004, with the smeared level density ρ2004(m); blue curve: 
Hagedorn gas with TH=180 MeV. 

 
The existence of a limiting temperature can be seen at once from the fact that the 

partition function:  
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does not converge for 1/T<1/TH. In more recent times, looking at the same formula 
from below, the Hagedorn temperature has been interpreted as the transition to a new 
phase of matter11. 

This is easily seen by computing the behaviour of the thermodynamical 
functions while approaching TH from below. We use the non-relativistic Boltzmann 
approximation, since the critical behaviour is determined by the high masss part of the 
spectrum, m>>T, to find (β=1/T, βC=1/TH):  
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where A is some constant and “reg.” represents terms analytic at βc. The integral is 
evaluated as follows: 
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so that we find, in conclusion, for pressure and for energy density : 
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Near the critical point, the hadron gas is very soft: the velocity of sound vanishes at 
βC:  
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The behavior of ε is quite reminiscent of the critical behaviour near a second order 
phase transition, which Cabibbo and Parisi interpreted as quark and gluon de-
confinement. However, there are several differences with respect to a second order 
phase transition. Until now we have considered poinlike particles only. If one 
introduces a finite radius of the hadron levels, the behaviour becomes less critical (see 
again ref.[10]). In fact, we could rather be in presence of a smooth cross-over from the 
hadron gas state to the liberated quark and gluon plasma.  

 
 

5. Order parameters for the phase transition 
 

The order parameter for the deconfinement transition, in the pure gauge system 
without fermions, is the Wilson- Polyakov loop: 
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L =< exp("F
QQ
/T) >    (5.1) 

 
F is the free energy of a pair of static point sources (heavy quarks) at distance r. F and L 
have the limiting behaviours for r → ∞: 

T<Tc: F∝ r → ∞, L→0 confinement  
T>Tc:  F →0,  L→Const.≠0 deconfinement 
Fig. 5.1 shows indeed a rapid rise of L at the 
critical temperature12. 

According to many indications, chiral 
symmetry is restored in the deconfined phase, 
indeed calculations support a drop to zero of the 
chiral symmetry order parameter,
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<"" >, 
correlated to the raising of L , as shown in Fig. 
5.2. 

 
Fig. 5.1.  Lattice QCD calculation of the behaviour of 
the Polyakov loop, Eq. (5.1), as function of 
Temperature (blue curve). Ref.[12]. 



Fig. 5.2. Lattice QCD calculation of the 
behavior of the chiral order parameter as function 
of temperature (blue curve). Ref.[12]. 
 

Lattice QCD calculations indicate a first 
order phase transition for the pure gauge 
system. In the presence of quarks, it is not yet 
clear if the transition stays, or if it attenuates in 
a simple crossover, a rapid but continuous 
transition between a gas of hadrons and a gas 
of quarks and gluons. According to recent 
speculations, the transition would exist for non 
vanishing chemical potential, to stop at a 
tricritical point, where all phases coexist, see 
point E in Fig. 5.3. 
 

 

Fig. 5.3. Schematic view of predicted and/or hypothesized phase regions of hadronic 
matter. 
 

A rapid increase in the energy density is shown by lattice QCD calculations with 
unquenched quarks (see again F. Karsch, quoted under Ref. [12]), until the ratio ε(T)/T4 
stabilizes to a constant, as it would be the case for a gas of non interacting massless 
particles. In the latter case, the value of the constant is predicted to be:  
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Lattice QCD calculations give a value around 12, about 80% of the predicted value. 

The deviation could be due to (expected) corrections to the relativistic perfect gas, 
which die only logarithmically with the increasing temperature, due to asymptotic 
freedom. It is unclear at the moment if the difference can be accounted by perturbative 

QCD calculations, or if it 
indicates more radical, 
non-perturbative 
departures from the 
perfect gas (see the 
Lectures by M. Gyulassy 
at this School13). 

 
 

Fig. 5.4. Lattice QCD 
calculations of the energy 
density of hadronic matter 
vs. T (Ref. [12]). 

 
 
 
 

 
6. Debye screening of charmonia   
 

The spectrum of charmonium states is well reproduced by a charm-anticharm 
potential, which is the superposition of a Coulomb-like term (i.e. a massless gluon) and 
a rising, confining, term:  
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In the de-confined phase, a phenomenon analogous to Debye screening is supposed 
to take place, with the gluon taking a non-vanishing mass (like the photon in a 
Coulomb plasma). One can describe the new situation by a modified potential: 
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the lattice QCD calculations described in the last Section suggest precisely this to 

happen. The exponential of the free-energy diverges for large r in the confined phase, 
corresponding to the rising term in Eq.(6.1), while it goes to a constant in the de-
confined phase, corresponding to the finite range potential in (6.2).  

The function µD(T) determines the interpolation between the two cases. µD vanishes 
below the critical temperature, and Eq. (6.2) goes back to (6.1), while it rises with T 
above Tc. For large enough µD, the screening can prevent charmonium formation. We 
give in the Table, see Ref. [2], the values of  µD for which the lowest lying charmonium 
states become unbound and the corresponding values of the temperature, TD.  



 
 J/Ψ Ψ’ χc(1P) 

M(GeV) 3.096 3.686 3.415 
r(fm) 0.89 1.5 2.0 

µD 0.699 0.357 0.342 
TD(nf=3)(MeV) 406 189 178 

 
The J/Ψ disappears at quite higher temperatures than the critical temperature. 

However, a good fraction of the J/Ψ observed in absence of nuclear effects originate 
from the decay of higher charmonium states, about 40% from Ψ’ and χc states which 
melt right above the critical temperature. Thus the estimates presented here are 
consistent with a sizeable reduction of J/Ψ as soon as the critical temperature is 
reached. 
 

7. Summing up 
 

The fireball produced in collisions with low energy density is essentially a pion gas 
thermalized at some temperature,T, below the Hagedorn temperature; 

Increasing the energy density ε, by increasing the c.o.m. energy and/or centrality, 
several phenomena take place in succession: 

• higher resonances appear in the fireball; 
• due to the increasing multiplicities of higher states, it becomes more and 

more difficult to increase the temperature; 
• we get in the Hagedorn gas limit: 

dT/dε ~(β-βc)3/2 
• hadron bags get in contact, bags fuse and quarks and gluons start being 
liberated. 

A cartoon representing all this could be as in Fig. 7.1. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.1. 

   Hadron gas 

ε/T4 

T 
THag~Tc~180 MeV 

Quarks & gluons 

Hagedorn gas χc and Ψ’ start fusing 



LECTURE 2 
 

 
Summary 

1. J/Ψ dissociation cross-sections in the Constituent Quark Model 
2. Attenuation factors 
3. Results for the hadron and Hagedorn gases 
4. A bold speculation 
5. J/Ψ as a probe of QGP: some conclusions 

 
1. J/Ψ  dissociation cross-sections in the Constituent Quark Model 
 

I consider in this Lecture the interaction of the J/Ψ with the hadrons that can be 
excited from vacuum at the huge energy densities reached already at the SPS in heavy 
ion collisions. Each of these hadrons is able to interact with the J/Ψ, transferring its c-
cbar content  to open charm final states: 
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Even restricting to tree-level diagrams, the interactions involve a large number  

of multi-meson couplings which cannot be derived from first principles, at present. 
Some couplings we can control from experimental data, for example the D*Dπ 
coupling, but for most of them we have no experimental input . One has to resort to 
models. Calculations available in the literature can be classified in four classes:  

• perturbative QCD (pQCD) based calculations;  
• quark interchange models;  
• QCD sum rules calculations;  
• meson exchange models.  

For a nice review of these topics see Ref.[14].  
The approach I shall describe is closely related to the meson exchange method. The 

total amplitude is written in terms of tree-diagrams involving effective trilinear and 
quadrilinear couplings such as: 
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In turn, multi-meson couplings are evaluated by the so-called Constituent Quark 
Model, a model originally devised to compute exclusive heavy to light meson decays 
and tested on a quite large number of such processes15. 

The essence of the model is shown in Fig.1.1 , for the case of the 
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J"DD 
coupling.  One starts by computing the quark loop on the left-hand side, c and q being 
the charm and light quarks, respectively, and then equates the result with the right-hand 
side diagram, computed with the vector dominance ansatz: 



! 

jµ
e.m. =

MJ /"

2

fJ /"
"µ       
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with both sides evaluated at q2=0. I give a few details on the calculation, mainly to 
illustrate the parameters involved and the related uncertainties.  

D meson-charm quark vertices are represented by a quark-meson coupling of the 
form: √(MDZD) γ5, pions 
appear with a pseudovector 
coupling, (fπ )

-1 kµγµγ5, as 
appropriate to their nature of 
quasi Goldstone bosons. 
Quark propagators depend 
upon internal momenta and 
an additional parameter, Δ,  

 
Fig. 1.1. Diagrammatic basis for the computation of gJπDD. 
 
representing the difference bewteen quark mass and the corresponding meson mass. Δ 
is the main free parameter of the model. It varies in the range Δ =0.3-0.5GeV for u,d 
quarks and 0.5, 0.6, 0.7 GeV for strange quarks16. The variation of results with Δ allows 
to estimate the theoretical error. 

Integration over the internal momentum in the loop requires both an infrared and an 
ultraviolet cut-off. The ultraviolet cut-off , Λ, has been set to the chiral expansion scale, 
Λ = 4πfπ. The infrared cut-off, µ, prevents momenta to access the confinement energy 
region, µ ≈ ΛQCD. ZD is, essentially, the meson wave-function renormalization constant 
and is determined from self-energy diagrams in terms of the quark mass and the 
ultraviolet and infrared cutoffs17. 

The extension of pion couplings to the pseudoscalar octet is done by flavour SU(3) 
symmetry, ρ couplings are computed by insertion of a vector current in the quark loop 
and vector dominace, the extension to the other light vector mesons is done by SU(3) 
nonet symmetry. 

In the computation of cross sections, thresholds are expressed exactly, in terms of 
the physical masses. Thresholds determine the energies at which the particles in the 
hadron gas become effective to dissociate the J/Ψ and are very relevant since they are 
of the same order as, sometime larger than, the thermal energies involved.  

Pion cross-sections have relatively high thresholds, which disfavours them with 
respect to ρ s. Similarly, P-wave processes such as: π+ J/Ψ →D+ Dbar are disfavoured 
with respect to S-wave processes such as: π+ J/Ψ→ D* Dbar, D D*bar. 

 



 
Fig. 1.2. J/Ψ dissociation cross-sections obtained in the CQM vs. c.o.m. energy 

 
Fig. 1.2 shows the J/Ψ dissociation cross-sections obtained in the CQM as functions 

of c.o.m. energy18. Fig. 1.3 gives a compilation of the cross sections obtained with other 
methods, see Ref. [14].  

 
Fig. 1.3. J/Ψ dissociation cross-sections obtained with different approaches, from Ref.[14]: 
QCD sum rules (band), short-distance QCD (dotted line), meson-exchange models (dot-dashed 
lines), non-relativistic constituent quark model (dashed line). 
 

It is reassuring to see that different approaches, all affected by their model 
dependencies, with the exception of the perturbative QCD calculation, give consistently 
non negligible dissociation cross sections: 

 
  

! 

"
hadr.abs.

= (1#10)Kmb 
 

This is true, in particular for initial π's and ρ's, the most studied cases. Hadron 
dissociation cross sections are quite comparable to the nuclear absorption cross-section, 
experimentally determined19 from p-A production of J/Ψ: 

 
  

! 

"
nucl.abs. = (4.3± 0.6)Kmb  

 
In conclusion, there is a clear indication that a reliable calculation  of J/ Ψ 

absorption needs to take into account both the effects of nuclear matter and of the 
hadron fireball. 



 
2. Attenuation factors 
 

J/Ψ produced by nucleon-nucleon collisions are detected by their decay into muon 
pairs. One usually gives the production rate normalized to the Drell-Yan cross section: 

 

! 

R
J /" =

#(A + A$ J /"+ ...)

#(A + A$ µ+ + µ% + ...)
 

 
Prompt muon pairs are not affected by propagation in the nuclear and hadronic 

medium, so that this ratio is sensitive to any mechanism which suppress the J/Ψ in the 
medium, that is Quark-Gluon Plasma formation as well as nuclear and hadronic 

absorption. 
The absorption lenght in nuclear matter has been 

estimated by NA50 from the data on J/Ψ production 
in p+A collisions. The effect is parametrized by 
NA50 according to: 

 

! 

(R
J /" )nucl = exp(#$0% nucl.abs.L) 

 
 
 
 

Fig. 2.1. The longitudinal lenght L, which regulates the nuclear J/Ψ absorption. Lorentz 
contraction is not reported (see text). 
 
where: 

! 

"
0

= 0.17 fm
#3  

 
and L is the (average) longitudinal lenght1 to be traversed by the J/Ψ, Fig. 2.1. Using 
nuclear models, NA50 gives L as function of b.   

After traversing the nuclear matter, the J/Ψ finds itslef in the hadron fireball, which 
is just starting to expand. The lenght that J/ Ψ has to traverse to get out of the fireball 
depends, among other factors, from the direction of the J/ Ψ and the shape of the 
fireball. Assuming for simplicity a spherical fireball and isotropic J/Ψ, the average 
leght that a J/ Ψ produced anywhere inside the sphere has to traverse before escaping 
is: 

! 

l
av.

=
3

8
l  

where l is the transverse dimension of the fireball2, defined in Lecture 1, see Fig. 1.1. 
Correspondingly, we get the attenuation factor: 

                                                
1 Note that the decrease of L due to the Lorentz contraction in the c.o.m. system, 1/γ, is compensated by 
a factor γ in the nucleon density. 
2 for a flat-disk fireball of diameter l, we would get a slightly different numerical factor, lav. = 4/(3π)l. 



 

! 

A
hadrons

"exp[# < $
i

i

% &
i
>
T

3

8
l] 

 
 
where ρi and σi are densities and dissociation cross-sections of the different hadron 
species. The product is averaged in the thermal bath represented by the hadron gas at 
temperature T.  

Using nuclear models, NA50 gives L as function of b, as shown in Fig. 2.2. Note 
that L flattens out around l=2R (corresponding to maximum centrality, b = 0). If there 

were nuclear effects only, the ratio of 
J/Ψ production to Drell-Yan pairs 
should flatten for l → 2R (L → 
maximum value) while data continue to 
decrease at large l, as we show later. 
The variable l is better suited than L, to 
describe the central region and the 
absorption by the hadron fireball.  

 
 
 

Fig. 2.2. The average longitudinal lenght L vs the centrality variable, l, for Pb (red) and for In. 
Note the flattening of L around the maximum value of l, correponding to central collisions.  
 

Using further the geometrical relation: l=2R-b, we express L in terms of l, thus 
obtaining the total attenuation factor  as function of the fireball transverse size l, in the 
form:  

! 

A
Tot

= N " exp[#$0% nucl.abs.L(l)] " exp[# < $
i

i

& %
i
>
T

3

8
l]  (2.1) 

The absorption lenght in the fireball is quite comparable to λnucl.abs. ~ 14 fm and the 
absorption increases quite strongly with temperature. We find that the contributions of 
vector mesons are very important, due to the low threshold of the cross-sections and to 
their large multiplicity. Including some other resonance like e.g. a1(1230) should not 
make much of a difference, since they do not present further advantages and are 
unfavoured by the higher mass. 
 
 
3. Results for the hadron and Hagedorn gases 
 

We fit the NA50, S-U and Pb-Pb data for l <5 fm with the previous formula, 
including fireball absorption as function of temperature, T, as well as nuclear 
absorption. We find good fit for the range: 165 MeV< T<185 MeV, see Fig. 3.1.  
 



Fig. 3.1. J/Y production normalized to Drell-Yan muon pairs vs the centrality variable l.NA 50 
data on Pb-Pb (boxes) and S-U (stars) collisions. Superimposed the nuclear absorption curve 

(red) and nuclear+ fireball absorption 
(blue), without geometrical, centrality 
dependent, effects (see text). 

 
  

 
 
 
 
 
 
 

It is quite encouraging that a microscopic 
calculation produces a temperature which is 
quite consistent with everything we know 
about the not-so-central collisions. The fit 
becomes worse and worse with increasing 
centrality.  

 
 

Fig. 3.2. Same as in Fig. 3. with geometrical 
effects taken into account. 

 
 
However, we should take into account that the energy density deposited in the 

fireball increases with centrality. Thus we may expect that T increases with centrality 
and, correspondingly, the opacity becomes larger. To estimate this effect, we: 
 allow an increase in energy density from l-5 fm onwards, by scaling with the factor 

g(b)=g(2R-l) introduced in Lecture 1, Sect. 1; 
 use the energy density-temperature relation of the hadron gas to derive the 

temperature appropriate to l to compute the opacity. 
The procedure introduces in Eq. (2.1) a further dependence from l, via the 

temperature of the thermal bath. We find curves much closer to the data, but still a 
marginal fit not reproducing, in particular, the discontinuity that data show around l =5. 
Even worse, the temperatures that are required at small centrality are quite large: if we 
start with T = 185 at l = 5 fm, we need to go as high as T = 205 MeV at l = 12 fm. It is 
unlikely that a hadron gas can reach these temperatures. 

To analyse the situation further, we introduce the concept of a limiting temperature. 
Instead of using a pseudoscalar- vector Meson gas we fix the temperature for l < 5fm at 
T = 175 MeV and extrapolate to higher centrality with the above procedure applied to a 
full Hagedorn gas with T= 180 MeV. The result is shown in Fig. 3.3. Corrections due 



to increasing energy density with 
centrality are not accounted in (a) 
and introduced in (b).  

 
 

Fig. 3.3. Same as in previous figures, 
assuming the fireball to be a Hagedorn 
gas with TH=180 MeV. Initial 
temperature is fixed at T=175 MeV to 
fit the data for l<5fm.  

 
 

 
The sharp rise of degrees of freedom near the Hagedorn temperature makes so that 

the temperature does not rise appreciably with centrality, the dissociation curve cannot 
become harder and the predicted absorption falls short from explaining the drop 
observed by NA50. 

To appreciate better the significance of the effect, we plot in Fig. 3.4 the ratio 
Observed/Expected vs. l for the cases: (a) T(l < 5fm) =175 MeV; (b) T(l < 5fm) =185 
MeV; (c) T(l < 5fm) =175 MeV, Hagedorn gas with TH = 180 MeV.  

 
Fig. 3.4. Ratio: Observed/Expected for 
J/Ψ production normalized to Drell-
Yan muon pairs vs the centrality 
variable l. NA 50 data on Pb-Pb 
(boxes) and S-U (stars) collisions. 
Figs. (a) and (b): fireball is a 
pseudoscalar + vector meson gas, with 
initial temperatures (for l<5fm) as 
indicated; also indicated the 
temperatures reached at l=12fm; (c) 
Hagedorn gas with TH=180 MeV, 
initial temperature T=175 MeV. 
 
 

(a) 
(b) 

T(l<5fm) = 175 MeV 
T(l=12fm)>190 MeV 

T(l<5fm) = 185 MeV 
T(l=12fm)>200 MeV 

(a) (b) 

T(l<5fm) = 175 MeV 
Hagedorn gas, TH=180 MeV 

(c) 



 
 
Some comments. The curve shown in Fig. 3.4 (c)  embodies the limiting absorption 
from a hadron gas, anything harder could be due to the dissociation of the J/Ψ in the 
quark-gluon plasma phase. We must stress, however,  that J/Ψ dissociation due to 
higher resonances than vector mesons has been neglected. The decreasing couplings of 
the higher resonances could eventually resum up to a significant effect, which would 
change the picture. Something similar happens e.g. in deep inelastic scattering, where 
the cross section due to any individual resonance falls down because of its form factor, 
but the total cross section is mantained by the new resonances appearing at larger 
values of the energy. However, the underlying reason for this is that we are entering a 
regime in which the phenomenon is described by a new picture, namely the scattering 
off elementary partons. In our case, this would mean going over to a description where 
charmonium dissociation is due to the interaction with quarks and gluons, which is 
precisely the signal of the deconfined plasma, above the Hagedorn temperature. 
 
 
4. A bold speculation 
 

Going back to Fig. 5.4 in Lecture 1, it is tempting to interpret the rise of ε/T4 as due 
to the excitation of more and more hadron resonances, as it happens in the Hagedorn 
gas. The transition starts when the number of effective degrees of freedom in the 
hadron gas equals approximately the degrees of freedom of a gas of quarks and gluons. 
For a Hagedorn gas with TH=180 MeV, the transition temperature and energy density 
are numerically found to be: 
  

  

! 

"(T) /T 4 #12$T = Ttrans =168MeV ;K"(Ttrans) = 2GeV / fm
3  (4.1) 

 
The value of the energy density agrees with what can be estimated from the Bjorken 
formula, Lecture 1. Encouraged by this, we may assume, as a bold hypothesis, that Pb-
Pb collisions at l = 5 fm produce a fireball with exactly ε = 2 GeV/fm3. For l > 5fm we 
may trasform the lenght scale in Fig. 3.4 (c) into an energy density scale, by scalig the 

energy density with the geometrical factor g(b).  
 
Fig. 4.1. Energy density, according to the Bjorken 
formula, vs. the centrality variable l, as obtained 
from the geometrical function g(b). Normalization 
is given by the assumption that  ε=2 GeV/fm3 for l 
= 5 fm. 
 
 
 

Recall that g(b) embodies the increase of the 
nucleon surface density with increasing centrality. Fig. 4.1 gives the l-ε relation implied 
by g(b) and Fig. 4.2  gives the result of the recalibration: the ratio Observed/Expected 
for J/Ψ given as a function of the energy density. For l>5 fm we may also transform 

 



energy densities into temperatures, using the relation: T≈(ε/12)1/4, approximately valid 
above the transition point. We have indicated in Fig. 4.2  the temperatures at which Ψ’ 
and χ states melt, according to the results presented in Sect. 6 of Lecture 1. The 
reduction of 20-30% in the expected J/Ψ yield is quite compatible with the 
disappearence of these states. 
 

 
Fig. 4.2. The ratio: 
Observed/Expected for J/Ψ 
production normalized to Drell-
Yan muon pairs vs the energy 
density ε. NA 50 data on Pb-Pb 
(boxes) and S-U (stars) 
collisions.  
The fireball is assumed to be a 
Hagedorn gas with initial 
temperature T=175MeV and 
TH=180 MeV. Arrows indicate 
the temperatures where χc and Ψ’ 
melt, according to the Table in 
Lecture 1, sect. 6. 
  
 

 
5. J/Ψ  as a probe of QGP: some conclusions 
 

When the idea was proposed, it was believed that J/Ψ would suffer little absorption 
from nuclear matter and from the “comoving particles” (σ<1 mb), hence that there 
would be very little background to the QGP signal; 

Nuclear absorption measured from p-A cross sections (but uncertainties still 
remain!) is instead ~ 4-5 mb, with a corresponding attenuation lenght ~ 14 fm and 
therefore a signal-to-noise ratio ~ 1. Absorption cross sections by comoving particles 
point also to the few mb range, as has been estimated with several methods involving 
rather different approximations. 

In the work I have described in these Lectures, we have made a new calculation of 
the J/Ψ dissociation cross-sections by pseudoscalar and vector mesons in a reliable 
model tested in other processes (the Quark Constituent Model) and we have applied the 
results to a hadron gas made of these particles. 

The effects of comovers are (i) non negligible and (ii) strongly temperature 
dependent. 

If we allow temperatures in excess of 200 MeV in this hadron gas, we can fit the 
NA50 results, albeit marginally. 

On the other hand, if we accept that there is a limiting temperature to the hadronic 
phase, estimated to be 170-180 MeV from independent sources (hadron spectrum, 
lattice QCD calculations) comovers cannot explain the drop in J/Ψ production seen at 
large centralities by NA50. 

χc (T=180MeV), Ψ’ (T=190 MeV) 



The picture that QGP sets in at centrality l ~ 5 fm is consistent with known 
temperature and energy density ranges. The observed drop in J/Ψ would be due first to 
χc and, later, to Ψ’ melting. 

The limiting temperature being a quite reasonable assumption, we conclude that the 
SPS has most likely seen the QGP. It would be interesting to correlate the J/Ψ signal to 
the other hint of new phase seen at the SPS, namely the increase in strangeness 
production. This has not been done, thus far, but work is in progress. 

RHIC data on J/Ψ would be extremely valuable, to check the signal against other 
signatures and so would the beauty signal. LHC data are eagerly wanted ! 

The study of charmonia in QGP is not concluded with the demonstration that QGP 
exists. The level spectrum vs. T could give interesting information on the dynamics of 
quark and gluons, on the non-perturbative corrections to the picture of a free quark 
gluon gas and it would probe deeply the new phase of matter. 
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