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1. General Notions on Groups [1]

1.1. A group G ig a set of elements together with a multiplication law which asso-
ciates a third element to any pair of elements of @: (a, b) — (ab) = ¢ in such a

~way that the following conditions hold:

i) associativity (ab)c = a(bc) = abe;a, b, c ;1)
ii) there exists an unit element e € @ such that for any a € G: ae = ea = a;
ili) for any a ¢ @ there exists an element a1, called the inverse of a, such that:

aagl=ala =e.

If ab = ba for every pair of elements in @, the group is said to be commutative
or Abelian.

1.2. A subset G is called a subgroup if the set of its elements is by itself a group
under the multiplication law of @. It is easy to see that a subset G’ of G is a sub-
group if and only if ab~! € G for any pair a, b ¢ .

1) The symbol ¢ means “belongs to”.
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The subgroup G’ of (7 is an invariant or normal subgroup if hgh! ¢ (' for any

he@ andany g e G
1.3. A mapping ¢ of a group @, into another (; is called a homomorphism if:

a—qla), b-—+gb) implies
ab — g (ab) = g(a)p(b).

@ is called an onto homomorphism if for any a’ € @G, there is an a ¢ (; such that
pla) =a'.

Let ¢’ be the unit element of @y. The set K, of the elements of @, which are mapped
into ¢', is called the kernel of the homomorphism ¢. It is easily shown that K,

is a normal subgroup of &,.

A one-to-one homomorphism of G, onto @, is called an isomorphism. In this case
K, = {e}?).

1.1 Let G’ bea subgroup of @, and a any fixed element of @. The set of all products
ah when k runs over the whole @', is called a right G' coset, indicated in what
follows as a@. If two cosets a@’, b@' have one element in common they are in
fact coincident. Therefore the whole group & decomposes into disjoint @' right
cosets. In the same way one can define left (' cosets.

When @' is a normal subgroup of @, then for any a € G:a = @a. In fact
the general element of a’ has the form:

ak he@.

But aha? = k', " € G'; hence:

ah = h'a

that is any element of aG’ is in G“a and conversely. Let ' be a normal subgroup
of @, and let us indicate with G/@" the set of all distinct @' cosets in G. The set
@)@ equipped with the following multiplication law:

@@) b@) = (ab)@ a,be@

turns out to be a group, called the factor group of ¢ with respect to G'. Due to
the fact that G’ is a normal subgroup, it is easy to see that the above introduced
multiplication law satisfies 1.1 i-iii. We observe that the unit element of G/G" is
el'.

Given a homomorphism of a group @, onto a group G, we can form the factor
group G,/K, because K, is a normal subgroup of &,. Observe that:

p(a) = ¢(b)

if and only if @ and b belong to the same K, coset. In fact let e, be the unit element
of G,: the previous condition is equivalent to:

e, = @(a)p(b)? = g(ab?)

) By means of {a,b,¢c,...} we denote the set of the elements a, b, ¢, ...

i e
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i.e. ab? ¢ K,. Hence there exists h ¢ K, such that:
a = hb
ie. aeK,b=0bK,.
Therefore we can define a mapping g of G4/K, onto @, as follows:
glaK,)=p(b) beak,

and this mapping is in fact an isomorphism of @,/K, onto G,.

1.5. Examples

a) Rotation group of the three dimensional euclidean space Hy.
We consider the get O, of transformationa of E, into itself, preserving distances
and leaving unchanged a point O. Given R,, R, € Oy, R, R, is defined as the
transformation :

R, R, X = R, (R, X)

which obviously belongs to Og. Furthermore the identity transformation X — X
belongs to Oy. All the O, transformations are one—one so that for any of them
it is possible to define an inverse which of course belongs to 0,. By definition this
multiplication rule is also associative, so that it gives a group structure to 0.

We choose a set of three orthogonal axes stemming from the fixed point O. Then
to any transformation: '

XX
is associated a three by three real (non singular) matrix {Ry}:
X'y = Zk‘ R Xy |
satisfying the orthogonality condition:
RRT—1 (1)

(RT ig the transpose matrix, R} = Ry).

For any R e O; the correspondence R — {Ry} is one-to-one; in terms of the
matrices, the product in Oy reduces to the usual matrix product so that Oy is
isomorphic to this matrix group. In what follows we will identify them.

It follows from (1) that det R = 4 1. The subset of the R’s with determinant
+ 1, is by itself a group, called Ry, and its elements are the proper rotations of ;.
g? lsRa normal subgroup of O, because for any element R ¢ Oz, and for any

€ Ry:
det (RR'R-1) = 1.

The factor group Og/R; has only two elements: the cosets e, = Ry and e, =
= —I . R;, where I is the unit matrix. Product rules are:

elel — eseg = e]_

818y = €3¢; = &3,
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b) SU,.

The set SU, of two dimensional unitary unimodular (determinant = 1) complex
matrices forms a group with respect to the usual multiplication law for matrices.
The general form of a S U, matrix is:

x P

v=(_5 L) e o= 2
—B %

(the bar denotes complex conjugation).

We can express U in terms of the Pauli matrices:

0 1 TR 10
“a=ty 5! "L 8 * ™\ =i

and the unit matrix o, as follows:

(cx,, + iy &y +ia,

U= ) .
—0g -} 1y g — 1oig

):anfxo_{_ia'u (3}

where a = (x,, &y, &3) and the real numbers o;(i = 0,...,3) satisfy:

W +od+adH=1. @)
Putting a«=—in, mt=1, =0, nzﬁl_f‘—]
a
by (4) we have:
of +A2=1

so that we can set:
0 .
rxuzcos-é— 0=60=2x

A = gin 5
go that:

U=cos%—£sin—g—'n-a. (5)

We show now that S U, is homomorphic to the proper rotations group R,.
For any three dimensional vector X we define the two by two hermitian matrix:

¥=X-o (6)
and observe that: »
det X = — |X|?

For any U ¢ SU,, we define the transformation?):
X' =UXU+ (M
3) If U= {Uy} is a square complex matrix, we define:
U: (O = ()
U+ (U = (Ug)-
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The following properties are to be noted :

i) X’ is a hermitian matrix being U unitary:

i TrX=TrX=0

it follows then: X' = X'. ¢ because any hermitian two by two matrix is a linear
combination of the Pauli matrices with real coefficients;

iii) det X' =det X = — |X'|2 = — [ X%

It follows that the transformation X — X’ is a mapping of E, into itself which
preserves the distances and does not change the origin. Hence it is a transforma-
tion of Oy Let us indicate with B (U) the element of Oy which corresponds to the
matrix U. Then from (7) we have:

S — Y P —
R(U,U,) - X = U,U,XU,+U+ = U, R(U,) - XU+ = R(U)R(U X

i.e. U - R(U). is a homomerphism of S U, into 0.
Observe that from (7) it follows that:

R(U) = R(— U).
Furthermore for any U ¢ SU, there exists a V € SU, such that:
U=V (8)
If U is of the form (5), it is sufficient to choose: '
V= éosi —is8in —mn
— 2 i 1 c.
Then:
R(U) = R(V)R(V)
hence:

det R(U) = (det R(V))2 = (+ 1)2 = 1.

We conclude that U — R(U) is a mapping of SU, into Ry (the proper part of
0,).

Substituting expression (5) for U into (7) and carrying out the calculations, it is
possible to derive an explicit expression of X’ in terms of X, m, and 0:

X' =X-n)-n+cosb[X — (n-X)n] +snb((n X X). 9)

So that X’ is obtained from X by a counterclockwise rotation of 6 around n.

Now let B be the rotation uniquely defined by its rotation axis (with unit vector
n) and rotation angle 6(0 = 6 < 27) in a specified sense, to be definite in the
counterclockwise sense, around n: the previous formula permits us immediately
to find a S U, matrix U sich that R (U) is the given rotation:

U =_cos% —-isin%—n-u.
This proves that the homomorphism U — R(U) is onto. It is easily shown that
the only matrices U such that
RU) =1
are

U=41

which consequently constitute the kernel of the homomorphism.
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c) SU,.

The set of 3X 3 complex, unitary unimodular matrices also forms a group with
respect to the usual matrix multiplication law, and this group is called SU,.

d) _Tho' set of proper Lorentz transformations forms a group indicated as L7
which is isomorphic to a matrix group: the set of 4 x 4 real matrices A such t-lmt4:
j) ATG('I = G

being @ the matrix:

1 0 0 o
0 —

fri i 0 0
0 0 -1 o
0 0 0 —1

ii)det A=1,4,=>1

d) Inhomogeneous proper Lorentz group.

Consider the set P] of the transformations of the Minkowski space defined as:
X = (X, X,, X3, X,) > X' = (X], X§ X5 X))
X; =‘§ Au Xy + aq
(where A ¢ L7, and ais a four-vector) or simply :
X' =A4X +a.

Applyi_ng a Pransformation determined by the pair (a, A), and then the trans
formation (a’, A’), we obtain a new element of P7

(@, 1) (@, A) = (@' + A'a, A’ A).

With this multiplication rule P7 is a group.
It is easy to see that the unit element of P7is

(0, I) ( = unit element of L7)
and that the inverse of (a, A)is

(@, A) ! = (— A-lgq, A4-1,

The subset
{(0, A)}

is a subgroup of P/ isomorphic to L7, and the subset
{(a, I)}

is an abelian subgroup isomorphic to the translati i
_ roup, 3 ations group in four-space. More-
over {(a, I)} is an invariant subgroup. S [ o

1.6. Topological and Lie groups

f’ullawilng ot;t }leﬁnition a group is an abstract set in which there is a multiplica-
ton rule satisfying i—iii. We have subsequently checked th rtai J
eerltio gt q y checke at certain sets of
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It is convenient to go somewhat further and introduce in these sets a notion of
nearness of two elements in such a way that the group operations enjoy a ‘‘con-
tinuity” property in a gense to be specified later. (In mathematical language this
procedure is referred to as the introduction of a topology in the group).

The reasons for doing so are that many results of the group representation theory,
which are especially important for physics, are based on topological properties.
We will not go over the general theory of topological groups (which is comprehen-
gively treated in many texthooks; e.g. see reference (1)); instead we will concen-
trate on a particular class of groups; those for which it is possible to put a one-
to-one correspondence between their elements and the points of a subset of a
n-dimensional real euclidean space H,. .

Let @ be the group under consideration and let ¢ () be its image in K,. If ¢ is an
element of @ and ¢(g) its image, then for any spherical neighborhood S, of ¢(g)

18, If—o) <e

consider the intersection of S, with ¢ (&) (indicated as S, Ng (@)). We define as
neighborhood of g in @ the set 2, of the elements whose image pointsliein S, N ¢ (G).
As g runs over real positive numbers we obtain a family of neighborhoods for
each element of & and with their help one can define the concept of limit and con-
tinuity of functions on the group in the same way ag in the euclidean space FK,.
One can also define open sets in G: a set § — G is open if any point of 8 is included
in a neighborhood entirely contained in S. If the group multiplication and the
inversion are continuous with respect to this topology, we will call @ a topological
group.

A continuous correspondence (function) between real numbers z, 0 =z =1,
and elements g (x) of a topological group @, is called a continuous path on G. The
group is said to be connected if for any pair of elements g and g’ there exists a path
having them as end points.

A path g(x) on @ is said to be closed if g(0) = g(1). Two curves f(z) and g(x) are
daid to be reconciliable when there exists a function I'(z,y) (0 < », ¥ = 1) con-
tinuous in both variables, with values in &, such that:

I'(z,0) = f(z)
I'(z, 1) = g(=).

In particular a closed curve g (z) will be reducible to the point f if it is reconciliable
with the constant function:

f@)=f, fe@ 0sz=<1.

A group @ is said to be simply connected if any closed curve g(z) is reducible to a
point.

Let us consider again the image ¢ (@) of @ in E,,. If ¢ (@) is a compact (i.e. closed
and bounded) set, then @ is said to be compact. In this case any continuous real
function of the elements of @ is bounded (Weierstrass theorem)4).

%) 1t must be observed that the notion of compactness of a topological group is intrinsic, and
can be given without referring to a particular parametrization of the group, just as the in-
troduction of a topology in a group (also for this topic see [1]).
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We specialize furthermore the concept of a topological group to that of a Lie
roup.

%et lll)ﬂ suppose that there exists in a topological group a neighborhood N of the

unit element e such that:

i) there is a one-to-one correspondence between elements of N and points of a

gubset of E,. In addition we now require those parameters to be essential, i.e. it is

not, possible to express any of them in terms of the remaining n — 1.

ii) if @ =a(x,...7,), b = b(y,...y,) are elements of N such that abd and a1 be-

long to N, and (z,...2,), (2;...2"s) are respectively the parameters of ab and a1,

then

Zi = zi(xl"'xm Yise--Yn)

2z = z;:(zl‘--xn); s, b=1,...n

are analytic functions of their arguments.

In this case ( is said to be a n-dimensional Lie group. (In this connection a func-
tion f(x,,...x,) issaid analytic at the point (a,, ...a,) if there exists a neighbourhood
of this point in which the function may be expressed as a converging power series
of the differences z; — a;). ' i;

We will choose the parametrization of NV in such a way that the set (0,...0) corre-
sponds to e.

1.7. Examples

We give here some examples to illustrate the relevant concepts introduced in the
previous paragraph, as well as to establish some useful results concerning the
groups which are of interest to us.

Let us begin with R,. In sect 1.5 we have identified any rotation by a unit vector
n and an angle 0(0 = 0 = 2=z). The drawback of this is that: R(f, n) = R(2x —
— 8, —n). We can instead obtain a one-to-one correspondence between rotations
and three-dimensional vectors stemming from the origin of E,, with lenght less
than or equal to z: to any rotation of an angle 0 (0 = 6 = =x) in the counter clock-
wise sense around a unit vector m, we associate the vector a« =0 -n(|a| = 71);
conversely given «, § and » can be obtained as:

0= |a|

e
|e]

(lee| == 0).

n=

The end points of these vectors fill a sphere of radius 7, and we note that the same
rotation corresponds to points on the surface diametrically opposite. Hence it is
necessary to identify those points in order to preserve the one-to-one correspon-
dence property.

Since the get of parameters is a bounded closed connected subset of Hy, Ry is a
compact connected group. It is instead not simply connected, as can be seen if one
considers a curve connecting two diametrically opposed points on the surface of
the sphere. These two points correspond to the same element of Ry, so that the
curve is effectively closed, but is cannot be reduced to a point.
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Let us consider a rotation R (6, n). From 1.5 (9) it follows that the matrix R which
corresponds to the rotation R (1.5a) has the form

S i 10
Rﬁ = (l — CO8 9) ngnj - Z g1n Bﬁiﬂﬂk -+ cos 0 :5” ( )
k

where n; are the components of n, € is the Levi-Civita tensor, and 4;; is the Kro-

necker tensor. _
This expression is equivalent to

0,00 '
. k . —_— o X 1]
R=R(a)=e"“£=§EB(n I =e (11)
where the 3 % 3 matrices Z; are defined as follows:
0 0 0 0 0 1 0o —1 0
Xl,—_ 0o 0-—-1}|; E'.!: 0 0 0 s ES:' 1 0o 0].
01 0 —1 0 0 0 0 0

This can be seen using in (11) the relations:
(n-Z) = —1+|n) (=]
(n-Z)p=—(n-Z)

(|n)(n])ij = ninj; o= n.
ne analytic functions of a,

(12)
(13)

It follows then that the coefficients R;; of fQ(“} are ni
and one can verify that the Jacobian matrix

appendix) in a suitable

istic ¢ it i ible (see ConnN, [2]
has characteristic 3. Hence it is possible ( e oo ot

neighborhood N of the point a = (0,0,0), to express «;
three fixed coefficients R;; (say Ry, Ryg, Ra):

Ky = DL,;(R“) -

rH ti‘

.onsider the product R’ - R = R of two elements of R4%), and call respect)
‘Ii(;;:' ;{:I[;,lﬁethe paframeters of R', R”, R. The coefﬁcie_nts R;; of R are analytic
functions of aand . Hence §, being an analytic function of threfs of such coef-

ficients, is an analytic function of a and . '
This demonstrates, together with the fact that the parameters of R-!are obviously

analytic functions of those of R, that By is a 3‘-dimenaional Lie group- )
In afl exactly analogous way it is possible, using (5) and the properties of Pauli

matrices, to write any SU, matrix as:
U = exp (—i%n-o) = exp (—ia - @) (14)

(/]
0=0=2n a-——-?-n

%) such that R’, R”, K ¢ N.
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so that there is a correspondence between the elements of SU, and the points
of the sphere of radius = centered at the origin of K3, and this correspondence is
one-to-one if one identifies all the points of the surface with the element — 1 of
SU,. Due to this fact SU, is not only a compact and connected group, but it is also
simply connected. The same arguments as before can be used to show that SU,
is also a 3-dimensional Lie group.

S8U,. We may identify any matrix of SU, with the real and imaginary part of each
coefficient Uy, obtaining a one-to-one correspondence between the elements of
SUjg and the points of a set of B,,. These parameters however are not independent,
because the matrix must be unitary and unimodular. We obtain 10 conditions at
all®), so that we have only 8 independent parameters a. It ig possible to write any
element of S’U, in a form like (11) and (14):

1.8

! U — el%: ag Fy i
! |

where F,, F'y...Fy are eight hermitian traceless independent matrices that are

listed, with their commutation and anticommutation rules in [3].

Formula (15) shows that SUy, is a connected, 8-dimensional group and in fact it

may be shown that SUj is also simply-connected.

An example of a non compact Lie group is the proper Lorentz group (1.5d). If we

choose as parameters of an element of L] its matrix coefficients, the subset of B4

8o obtained is not bounded ; in fact, in the coefficients of matrices belonging to the

subgroup of special Lorentz transformations there appear expressions like :

o
=

which of course are not bounded.

(15)

0=pg<1

2. Linear Spaces

2.1. A set L of elements z, y, 2,... i8 called a complex (real) linear or vector space
i;

i) L is a commutative group with respect to a composition law (indicated with the
symbol ) called sum:

& T =418 0+2=2 x4+ (—x)=0

ii) the product ax(x ¢ L, x = complex (real) number, xx ¢ L) is defined so that
the following conditions hold:

a(x +y) =ax 4+ oy
x(Bz) = (af)x = xf
(¢ + B)z = xz + pa
l-xz==x.
%) Nine real conditions are the real and imaginary part of equations like
Zy uig ujx = 0y,

. and the tenth is the condition: det (U;;) = + 1.

B

e

29 n elements x of L

289
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are said to be linearly independent if

n

Elaka:,, =0

«p = complex (real) number implies:

O(k"‘——"o k:‘-—lﬂ

wi il be said linearly dependent. ) G
{\):?};e;:;s i;:: )}z“;; n-dimensional if there exist 7 linearly independen

i . Any set of n
whereas any n -+ k vectors are al.lwajirs lmegl:;’s (i?])leer:ld:nt (l? gfo:)L, a;}:d o
i i dent vectors e;(+ =1,...7 ¢ baalﬂ_ :
::r(l;i;g 11:: cala.eﬁ‘r}l]ilq:,: way any vector = as & linear combination of them

n
xTr = ZSC‘B‘.
i=1

A transformation 7'

x>z =T() zel, o' el

i i i ce L', is
of the n-dimensional linear space L into the m-dimensional linear spa

called a linear operator if .
Te+y)=TE +TW Tz)=2 (®)-

1f {e;) is a basis in [ and (¢} is a basis in L', we have

n "
m n _ T e
x -_-:kz; xiep = T(2) :‘é; x; T (e) i=-21' :c;t;; i €

so that .
:ci. — Z T" x;.

i=1

re obtained from those of x,

’
ector & & )
s given transfor-

; f
Hence the coordinates of the trans Othat uniquely represents the

by means of a (m X n) ma:itr{hf} T
ation in the bases {e;} and {&;}
;I; in a linear space L, for any fixed n, there e

iy sai infinite dimensional. ) o : :
?Bh;njf ;31:?:;1(;1 It(?f Eeliﬁl:iails;ace L, such that any linear combination of elements 0

i i f L. L is said to be the
it, i bspace (or linear manifold) o g B
[ belongs to it, 18 called a su e Hoadr k) 800 e of Boa
i s bsacesl,l,...lflb app _ r o
Z;r;::s:euclin uonfi;ltii:,l;uaspa linea:r r:ombination of vectors contained in ly, I

will write:

xist n linearly independent vectors,

L=L,PlL®Dl.--
i into the com-
92.4. A correspondence of pairs of vectors of a complex linear space L into the

plex numbers: oy > (53)
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satisfying the conditions:

(x,y) is linear in z: (xz + Bw,y) = a(z,y) + B(w,y)
(*y) = (,7)

(x,x) = 0, (z,2) =0 if and onlyif z=0

is a scalar product in L.

We observe that in any finite-dimensional space it is always possible to define a
scalar product (this is not true in general for infinite dimensional 8paces: the exi-
stence of a scalar product must be assumed as an additional hypothesis): in fact if
x; are the coordinates of x in a fixed basis and y; lare those of Y, we define

L
(x.y) = 3 3,
i

and it is easy to see that all the previous conditions are satisfied.

Any linear space in which a scalar product can be defined is called a Hilbert space.
In the infinite dimensional case the additional hypothesis of completeness is required
(see [4]).

With the aid of the scalar product it is possible to introduce the concept of lenght
of a vector z:

Iz) = J(x, ).

If now 7' is a linear operator which maps L into itself, then we will say that 7' is
bounded if there exists a positive number C such that for any vector x == (:

5 HT_x[ i
fef = 7

To any bounded o perator 7" it is possible to associate another one, which is called
the adjoint, defined as the operator satisfying the following condition :

(T'z, y) = (z, T+y)
for any Yy, e L
when T = T+ 7 g called gelf adjoint or hermitian; when 77" — PPr—= 1. T
is said to be unitary.
3. Representation of Groups
3.1. Let G be a group and L a linear space. A representation of (7 in L i by defi-

~ nition a correspondence between elements of & and linear operators mapping I,
- into itgelf, in such a way that:

T{.fhgz) = T(g,) T(g,) 91,92 € O
T(e) =1 (1)
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where I is the identity operator:
Ig=2 xel.

: : e
It follows from (1) that the operator T'(g) (7 € G) has an inverse that is 7'(g-1);
in fact:
e TeTe)=Ter)=T()=1I
T@HT@)=T@'g)=T)=1.
The same group can be represented in finite dimensional spaces as well as in in-

finite dimensional spaces. In the first case we will. spea.].i of ﬁ::;iiet ;lf;::;:m;fo:l]f:
representation, the dimensionality of the representation being eq

' gpace.

When L is a Hilbert space, we can consider unitary representations of @, i.e. those
for which T'(g) is a unitary operator.

3.2. Examples

i i -to-one correspondence be-

ider again R;. We have seen that there is & one. : '

E»E:es:l igtazion a.r?d 3 X 3 real orthog?nal qnatf:lces V{rlht-ill dat:rpr:.lmtla:z ;gt;l:ll :::g] ly
trices are operators in a 3-dimension real linear , 8

gl‘wizgs:orl'nr:spondenee f?lllﬁlls conditions (1), so that it is a representation of Ry. In

iti is 1 -to-one representation, i. e. a fait.hfu'l one. )
ﬂitﬁ Z}::s;g; ?1112 get L2 ofpthe complex valued functions ¢ (x) defined in E,,

such that
) [ ly@)* &=
exists. This is a vector space, and also a Hilbert space, with the scalar product
defined as B
(v, 9) = [y(@) § () dz.

"The Schrédinger equation for a particle of mass m in a given potential V (z) is
[—“; Vi (B — Vt:c))] p(@) =0 @)
2m

and for certain classes of potentials (for ex;mpl:: Co;lox:lh?spoat:;nil;i:l{lﬁhg;ial eLx;si; ]?;
% solutions of (2) corresponding to boun states. In case iy s
:‘ubi‘;‘rl.l{z}’) of(tl)w solutions of (2) corresponding to the same eigenvalue B - Lg is

obviously a linear space. )
Define for any rotation R € Ry the operator T'(R) in L? as

(T (R)y) () = y'(x) = p(Rx).
If V() is a central potential, i.e.
V()= V(|
then T (R) maps Ly into itself. In fact let y(x) ¢ Lg then

L. ; -
[2"7: V@~ V(m))] p(B1x) = [é"?n V4 (E— Ve ))] p(@)=0
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where &' = R-1x and we have used the fact that
V(®) = !
o () = V(=)

_, 02 9 8 2
V“ = — = R R T e U, . a = "
% ox} %’ WO o Dzl % ax? L

due to orthogonality of Ry;.
In addition the correspondence R —» T'(R) satisfies (1)

(T(Rl Ra)'!') (®) = p(B 1R, e) = (T{-Ra} 'P) (B 'x) = (TI(-Rx) T{Rs}?’) ()
1.e. T (R, Ry) = T(R,) T(R,)

and obviously the identity of R, is ma i i
y _ a pped into the unit o tor. H
a representation of Ry in Lg, which is furthermore unitar;fe i

3.3. a) Equivalence of representations

Let 7'y and 7'y be two representations of a gi i

s TR MOCS 08 TR : given group in the spaces L, and L,.

e gthat quivalent if there exists a one-to-one linear mapping 4 of L, onto L,
Ti(g) A = ATy(9)

for any g e @. In this case we will write 7', ~ T',. :

tTl;'e set of all representations of ¢/ decpmposes into classes of equivalent represen-
ations, _and the _fact that two equivalent representations are essentially th

same thing, permits us to limit our study to inequivalent representati S

b) Reducible representations. 3 o

A subspace [ of L is said to be invariant for a representation of ¢ in L, if

T@)xel whenzel

for any g ¢ G. (O and L are always i i ivi '

) ; i ys invariant (trivial) subspaces). If a -
E?Ft.m-n b};eas no invariant subgpaces other than O and L, itis sailc)lato lge irredl;leéillﬁ:en
! eLo &-ve’that 1f T(g) is a finite dimensional reducible representation of' G
;;an,n::llbl 1‘;1 a.lﬁ n:vajrla.nt. subspace, we can choose a basis in L such that [ is
R {Ly= 16@?’).8 ements of the basis, while the remaining ones span a sub-
The matrices corresponding to the operators 7'(g) in this basis are of the block

form
. _[Ti(g) @Q9)
k= (0 T,-(g)) (3)

where T';(g) maps [ into i
el 5 -ﬂ}n ficpt,: into itself, and T';(g) as well as T (g) define two representa-

gwﬂﬂ=(ﬂwoﬂm)fwmowﬁ+emnﬂmg
0 Ty (g1) T (ga) )

When @Q(g) = 0, Il and I’ are both invari i
=0, ant. In t i
decomposes into the direct sum of 7' (g) and Tpn[g}l?m SR SR

T= T;(—-—BT‘;.
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In general we will say that a representation T of @ in L is decomposable if it is
possible to write L as the direct sum of invariant subspaces 1, ly, ... 8o that

L=hb@®L® =k

T=T,®T,D =BT

If in addition any component 7'y of T' i irreducible, then 7' is said to be com-

pletely reducible. We must observe that there are reducible representations of

groups that are not decomposa
complex number which is a comm

T(z}:(:] f) zeC

constitute a representation in the 2.dimensional complex vector 8
group. Obviously the subspace ! of vectors like

(5)

{s an invariant one. However no other invariant subspace exists because
1 2\ fu) x u
0 1)\v] T \v

which are impossible to be gatisfied for any z if v == 0. Hence T'(2) is not de-

composable.
Furthermore a decomposable representation is not always completely reducible:

for example the representation

ble. For example let us consider the set T of
utative group under the sum. The 2 X 2 matrices

pace of such a

implies

0

0
0
zeC 2—>T()= 1
0

(==
o n o

1
0
0
0

is decomposable but obviously not completely reducible.
However for unitary finite dimensional representations it is always true that

a reducible representat.ion is completely reducible. - :
It sufficies to show that if / is an invariant subspace, the orthogonal complement

1L of I is also invariant. In fact we have:
g—>T(9)
gl T = (T@) = (T)

gothatif wel, yelt
TgYzel
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0= (T, y) = (= T(9)y)
T(@yelt when yelt
for any g ¢ . We may then write:
L=I1gpIlt
T=1,6p1T..

If both 7', and 7';1 are irreducible, the theorem is proved. Otherwise there will
be invariant subspaces contained in [ and (or) I, . In this case we repeat the above
arguments, decomposing 7', and (or) 7'1. Being L finite dimensional the process
must end after a finite number of steps leading to a full reduction of 7'. A weaker
result holds in the infinite dimensional case, namely the unitarity of the represen-
tation guarantees only its decomposability.

3.4. Characterization of the representations of compact or finite groups.

One important problem arising in the application of group theory in quantum
physics is to know all the inequivalent representations of a given topological
group @. This problem of the utmost importance from a purely mathematical
point of view, has not been completely solved for an arbitrary topological group.
However in the case of compact groups (and finite groups, i.e. those groups
which contain a finite number of elements) the situation has been completely
clarified by the works of Peter and Weyl, whose results we will summarize.
It is necessary in this connection to restrict our attention to those representations
T satisfying the following requirements:
i) T' is a continuous representation of @ in a Hilbert space H; i.e. for any ¢ ¢ G,
from

g —~g 9@
it follows

I1T@g)e —T(g) x| -0

for any vector x ¢ H;

i) if H is infinite dimensional, 7T'(g) is a bounded operator (2.4.).

Then the following statements hold:

a) in any class of equivalent representations there is a unitary representation
(U.R.);

b) any irreducible representation is finite-dimensional ;

¢) any U.R. is completely reducible.

It sufficies then for the groups under consideration to study the finite-dimen-
sional irreducible U.R.

4. Representations of a Compact Lie Group

4.1. In this section we want to show that in the case of Lie groups, the problefn
of finding out the irreducible representations is essentially equivalent to that
of finding finite sets of operators obeying certain commutation rules, or, more
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technically expressed, to find the irreducible representations of the Lie algebra

associated to the group. ) ) )
We restrict our attention to the finite dimensional representations due to the

fact that we are interested in irreducible ones. . )
ﬁ:t then g — T'(g) be a finite dimensional continuous representation of the

; : : gy
compact n-dimensional Lie group @ in a vector space L. IE (ogye -5 )
paral:netrization of a neighbourhood N of the identity e of @, then we have

T(g) = T(x%---»04) gEN.

i i = - nalytic?)
It can be shown [5] that the operator functions T=T(x---» Xa) 8re a
so that there exist n operators I, (they will be called infinitesimal generators),

defined as T k=1,...n
I = (—_) 0.

Qo] oy =0g= ...=

For example if we represent Ry with 3 X3 real orthogonal matrices R;; as seen

before, due to the fact that
R—=R(@O-n)=R(a) ReR,4

T(R) = e~%
with 2 defined as in sect. 1.7, we have

I;- e Eg.
These operators have the commutation rules
8
(I, Ij] = kzlﬁm I;. 1

In the same way, from eq. (14), for the 2-dimensional representation of SU, we =
find the generators
. O

L=—ig

which satisfy commutation rules identical with (1‘}. )
42. We wi}III now deduce a differential equation satisfied by the operators
T(xy,. . -, &), connecting them to the I; [6]. Let g and f belong to &; then for

any z ¢ L, we can put
yig™) =Tg"=. (2)-

From 3.1 (1) it follﬁws that
T(fg) yg™ = T(fg) Tlg Nz =Tz =y(f)

ie.

y(h =T y@™"- (3)

7) For this we mean that any matrix element 7' (x,, .. .,y) i8 an analytio function of (%;,...,0%).
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Let us fix now f in N in such a way that f-1 ¢ N. If g is in a suitable neighbour-

hood of {2, then

geN
gfe N
and we can write eq. (3) as:
Y () = T(xilfg)) y(xilg™)- (4)

Taking derivatives of (4) with respect to the parameters o;(f), we obtain:

ay(on(f), - -oulf)) 2 Tifg) doulfg) .
dml) 2oy dealh Y )

It is important to note that the real functions Sj; =

that tl b = (0 (fg)/2xi(f)) depend on
f, g, on the group mul‘tlphcatlon rule, on the parametrization givex?l topf\f, but
not on the representation 7'(g). Letting g — f~! in (5), we obtain the equation

0 3 - Oy S
Y. - o) hz; LSy (s« + 500) Y075 « - o Gin) (6)

3“;

together with the boundary condition

y(0,...0) =z
or, in an equivalent way
0T (g, - - &y) n '
—30‘;_,:1%‘11,8”{“1,..0:,,) Tiloey oo 00a) (7)
T(,...0)=1.

We can now demonstrate the following theorem.

Jl[ifn /1 (gs) andLTa{gzlt:f relll)resentations of a connected Lie group ¢ in the same
ear space L, and they have the same infinitesimal generators I, then fo

g € G, Ti(g) = Ty(g) ; o

I? fact T, (g) and 7'y (g) are sr_)lutiuns, in a certain neighbourhood N of the unit

element, of the same differential equation (7), with the same boundary condition,

Sth that, f9r any 61811:181:113 geN we have T,(g) = T'5(g). Now in the theory

of topological groups it is shown that any element g of a connected group can be

:lx.é)iessed as‘&hlljjmdlllgi):i)f a finite number of elements g,, ... g belonging to an
itrary neighbour of the identity: let N i

T e 6 motase v now N be such a neighbourhood.

g=0g:---0 gi€N
T(g) = T1(g1) Ty(g9). - - Th(gi) = Talgy) - . . Tolge) = Ty(g)

which proves the theorem.

Group Theory and Unitary Symmetry Models 297

4.3. Going back to (7), we must have, for any golution T'(g)
2T  *T()
doy doy Oy Doy gl (8)
(integrability conditions). For g = e, from (8) it follows [6]
[(Te 1] = ;‘ Culn 9

where the real numbers C¥, (structure constants) depend upon the derivatives
of Sy evaluated in &; = ay =...=0, ie. they are independent from the

particular representation chosen. By virtue of (9), C%, satisfy
Ch s 0?;-

1}3 (Ch Ck; + CX Ck + ChCE) =0. (10)

Consider now a real vector space S of a dimension n equal to the dimension of
the Lie group @, and let {4} (k=1... n) be a basis in 8. With the aid of C% a

composition rule in § can be defined as follows:

(Aer 2¢) > 4, 24 = (by definition) = 3 o, Ay (11)

If €r = I*Al.

and

y=;‘yuh zr,yel

we define :
(.‘.Q, :'I) —> [.'.B, y] = é‘ LY [Ah Ai] =

== X 0'- 1 .

;(g kY h) .
Due to (10), this multiplication rule has the properties
[%,y]=—[y,2] yxe8

[, [y, 2] + [ [=, yl] + v [z z]] = 0 (Jacobi identity)

which are analogous to the usual properties of the commutator of two operators.
The vector space S equipped with the composition law just defined is called the
Lie algebra A (@) associated to the group @. Tt seems that this definition depends
(through C;) upon the particular parametrization of N. However if we make an
analytic change of variables in N (i.e. if g N and g= (&}, ...n;), then

of = af (&, . . - )

the arguments), we obtain a set of new

are invertible analytic functions in all
through a non singular matrix

structure constants C'%, which are related to Cy
a,; in the following way: )
CA = % g Cy@Na

a6

29%
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so that it is possible to find in A(Q) a set of n linearly independent vectors
Ap = 3lagy Ay such that
A

[Ah 4] = ﬁZ‘ C'hi 4.

We see then that to a change of parametrization in N, there corresponds in
A(@) only a change of basis, so that in fact 4 (@), is uniquely determined by .
We can at this point introduce independently from the group @ the concept
of representation of the Lie algebra A(@). By this we mean a mapping of A (&)
into a set of linear operators defined in a vector space L

z—> A4(x)
such that
i) A(xx + fy) = a4 () + fA (y) (linearity)
ii) 4 ([, y]) = [4 (), 4 (y)]

where now [4, B] means the commutator of 4 and B.
We then see that starting from a representation of @

g —T(g)

its infinitesimal generators can be thought as a representation of a basis in A (@),
which extends by linearity to a representation of A(@). The usefulness of intro-
ducing 4 (@) is that the converse is also essentially true, in a way to be explained
below.

Let then {4} be a basis in A(#) and let

Ak - A‘.
[4i, 4i] = %_,' Ch An (12)
in a finite dimensional representation of A ().

C}; are the structure constants associated to @ through a given parametrization
of N. Let us consider the differential equation

i S TR, |
Ba,,

ﬂgshk{“l}"‘aa‘n)AhT(“l""r“n) (13)

T0,...0)=1.

The integrability conditions of (13), can be expressed in terms of the S, (i)
and it can be shown ([7] cap. IX) that they are satisfied in a neighbourhood of
the point (0, . . . 0) due to the definition of Sy, (see eq. (6)) and to eq. (12), which
is the form that the integrability condition assumes in the point (0, . . . 0). Hence
(13) is solvable in a suitable neighbourhood N’ of the point (0, . . . 0), giving us a
correspondence between the elements g ¢ ¢, contained in a neighbourhood of
the unit element, and linear operators 7'(g) in L.

It may be verified, in a rather cumbersome way, that if g,¢',g9’ ¢ N', then

Tgy) =T T(),
and for this we refer the reader to [6].
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Let now g be an arbitrary element of @&; by a result quoted previously, if @ is
connected, we can express g as a product of elements of N':

g=91- -0 G0 --geN.
It would be tempting at this point to define
T(g)=T(g)...- TG,

obtaining in this way a representation of the full group in L (it is obvious that
this definition satisfies 3.1 (1)). However, if

9= -=g-- -Gk, gugieN’
we are not sure that

T@)T(g) .. -Tg) =Tg1)---Tlgk), (14}

and in fact there are many cases in which they differ.

As an example of this we may consider the group & of the rotations of Eg around
the z axis. We parametrize this group with the values assumed by the rotation
angle 0(— = = 0 = n).

To the points 6 = 4z it corresponds a unique element so that they must be
identified. If g(0,), g(0,) are elements of a neighbourhood N of the identity, and

g(f,) -g(0;) € N, then
g(0,) g(0;) = g (6, + 0y).

This gives to (¢ a structure of Lie group, and in addition & is compact and connec-
ted. This group is one dimensional and so is A (@); hence any operator 4 on a
linear space L, determines a representation of A ().

The simplest example at hand is the representation of A (@) over the one dimen-
gional complex linear space. Consider the linear operator ik (i.e. the operator
that multiplies by ik, k real number). We take ¢k as the representative of the
generator of A (@), and equation (13) reads

oTO) .
76) = 1
T (0) = eito

where § belongs to a suitable neighbourhood N of 6 = 0. Let now g(8) be an
element of (. There exists an integer n such that 6/n belongs to this neighbour-
hood, and we can define:

T(g(0) = T(g O/n))* = e™.

However the element g which corresponds to 6 = 4+ = can be written (with a

suitable n) as
Y ad)g L= §
I\n) 209 n
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with g(z/n) and g(— 7tfn) belonging to N; but now we have

(0 R T

The failure of this method is due to the fact that @ is not simply connected. For
simply connected groups instead eq. (14) is fulfilled (see [7]).

In any case given a connected Lie groups @, with a Lie algebra A (@), it is possible
in an essentially unique way, to construct a connected Lie group @, having the
same Lie algebra A(Q), which is in addition simply connected [11.

From this it follows the existence in @ and @ of two neighbourhoods N and N

ésf:ﬁ'iGN
g,/ e N

h gﬂg}i*"f
then

9/ € N and §f «» gf.

This “local” igomorphism, since @ is simply connected, can be extended to a
homomorphism @ of @ onto @ (1] cap. VIII). @ is called the universal covering
group of @.

When @ is simply connected this homomorphism reduces to an isomorphism,
ie. @ and @ are essentially the same group. :

At this point it should be clear that from a representation of the Lie algebra
A(@) of a connected Lie group @, we can construct a representation of the uni-
versal covering group of G. Let us see how to sort out from the representations
of G, representations of @. -

If g>T(@G) isa representation of @ we consider the set of those operators which
correspond to the kernel K, of the homomorphism (see 1.3) G —@. If this
set reduces to the identity operator, then T@ = T(f) when g and f belong
to the same K, coset, i.e. the function 7'(j) is constant over each K, coset. Hence
to any element § K, of 5‘;‘1(, it corresponds a linear operator

TGK,) =T ()

~ in a way that preserves the asgociativity of the multiplication law in (E;‘K?. This
correspondence is then a representation of a;'K, in L and also, being CF/K? iso-
morphic to @, a representation of ¢ in L.

Summarizing we can say that:

i) if @ is simply connected, a representation of A(G) in L determines uniquely
a representation of @;

ii) if @ is not simply connected, a representation of A (@) in L determines a repre-
sentation of @ which reduces to a representation of @ if and only if the kernel
K, of the homomorphism @ - @ s mapped into the identity operator. To
exemplify let us consider again the case of By and SU,. We have seen that the
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. i
infinitesimal generators of 8 U, verify the same commutation rules as the genera

i.e. they have the same Lie algebra. ) ) |

Eriggifigt: (S?U,eijé simply connected, so that SU, § tﬁl:;;;\:::l;r% g;(l)uz) é):t;i.::r
. i :

ion 1.5b, the homomorphism of S U, on £ : , tog
{&I;tglhil::cft:z? that the kernel K, is the set of the two ml}tn:jead;‘la:t:l.‘mlﬂ); s:::
later that any irreducible representation %i a4 ('S'U);ul:hu:l?vl; y); oetemninen by on
i integer non negative number j, in ; )
;leﬁfag?:-ml' haghlzn %is an integer the elements ;i: 1 aire mapped into unity, so
that ?these representations are in fact representations doe ﬁ.‘!li,. el Rt
4.4. Quite independently from Lie groups, we ok e 4
Lie algebra as a set ¥ of elements such that:

T -dimensional linear space; _ _ -
13 ﬁlflssreae;ei:i;‘ in ¥ a composition law indicated as z, ¥y — [z, y] linear in x and y

i i isfyi bi’s identity (see sect. 4.3.). .
antisymmetric, satisfying Jacobi’s O . Tt bW Bisiag
define a representation of 7 in a p « to. Apping
ﬁs —>bi[ﬁ():; :? thee ::I«a:.tnem.tp&lr of ¥ into linear operators of L satisfying conditions
a) A(xx + py) = ad(x) + fAY);
b) A([z, y]) = commutator of 4 (z) and 4 (y) = [4 (z), 4 (v)].

i tation of ¥. In this
i importance is the so-called regular represen : Sl
gefpx};::ﬂ::tlﬁnlr pp?lays a double role in that it is the linear space in whic

i i i t to be
repregentation is contructed and at the same time it supplies the elemen

represented i

x — ad (z)
into i defined as
where ad () is the linear mapping of ¥ into itself (qua vector space)

ad (2)y = [, y].
Furthermore

ad (a2 + f2) = x8d (2) + fad(2)
fad (z), ad (2)] = ad ([2, 2]

by virtue of Jacobi identity. Hence the correspondence

x —ad (z)

is in fact a representation of £. o i
ﬁrininvariant I:mbspace for the regular representation is called an ide

yeSsS
. ad (2)y = [x,y] e S forany z ¢ 2.

i i implies [z, y] = 0.
icular .# is abelian when z ¢ y e imp h
:I[’I;el;:;tfuoirabaence of ideals has extrelmely important : :;:cix:sqil;elx::e f:];sge :
structure of the Lie algebra itself and Lie algebras are di

accordingly:
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i) simple Lie algebra: no ideals other than £ and zero;
i) semigimple Lie algebras: no abelian ideals other than zero;
iii) all the other Lie algebras.
Whereas for the first two classes there is & complete mathematical theory, the
third one is not as well assessed till now.
A subalgebra of £ is a linear subspace I such that

x,yel
implies
[z, 9] el
if in addition for any z,y el
[, Yyl = 0,

we say [ to be an abelian subalgebra.
Finally we mention that for any Lie algebra ¢ there exists always a connected,

simply connected Lie group @, such that
A =Z2.
Hem'ce it is equivalent to speak of Lie algebras or of connected simply connected

Lie groups. Groups related to gimple (semisimple) Lie algebras, are called in
turn simple (semigimple). In addition the correspondence between Lie groups

and Lie algebras is such that:

there is in & there is in ¥
subgroup <> subalgebra
abelian subgroup <« abelian subalgebra
invariant subgroup < ideal

abelian invariant subgroup «» abelian ideal

We introduce another useful concept: a subalgebra € is called a Cartan subalgebra,
if it has the properties: _

a) € is a maximal abelian subalgebra, i.e. there exists no other abelian subalgebra
containing € ; '

b) if ke ¥, then in any representation of € over a complex linear space, A (k)
is a diagonalizable operator.

For semisimple Lie algebras associated to compact Lie groups, i.e. those algebras
we will use later in physical applications, one can ghow that any ¥ = 0 admits
non zero Cartan subalgebras and that all Cartan subalgebras of ¥ have the same
dimensionality. The common dimensionality is called the rank of £.

Finally we make a remark concerning the characterization of the connected
Lie groups admitting the same Lie algebra #. The simply connected group a
uniquely identified by 4 must be of course the covering group of all them. Hence
for each of them there is a particular homomorphism aq g @, so that @ is iso-

morphic to the group G|K,. The essential feature of K, are: ~
a) K, is a central subgroup, i.e. its elements commute with all elements of &;

b) K, is a discrete subgroup, i.e. K, is made up with isolated elements (in @). In
particular if @ is compact, K, has a finite number of elements.
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Hence given @, one has to identify all its central dise ich i
g n @G, rete subgroups, which is a
relatively simple task. Then by making th i ient g
e y g the corresponding quotient groups, one
For example see the case of By and SU,. 4 11 i

f a is the only discrete central sub-
group of 8U,, so that Ry is the only non simply connegted greup havin lt".lhe
same Lie algebra as SU,. =

5. Kronecker Product of Representations

5.1. Let L and L’ be two linear spaces, respectively of dimensi 4
Congider the get L ® L' of all formal ﬁumgs) : y : ¥ Fine @d "

1%):2%.!”‘)"”’) m=1...n
mm’ '

m=1...n

where |m) and |m’) are bagesin L and L" and i aghi
e Cum’, 8Te arbitrary co
Defining linear combinations of elements z, y € L®L as i

"‘!x) +ﬁly) =Z:("xcmu’ + Bbmw) |m) |m")

?},m- are the coefficients pertaining to y).

, ® L' acquires a structure of linear space (of n -2’ di ion i
called the tensor or Kronecker product of L tjl(laes L. ekl
In L ® L' a scalar product can be defined as

(‘r! y, = Zc‘uw' b_'m’-

wi,m

If now g — T'(g) and |g— T"(g) are two re i

: presentations of the same group G
in L and L', a new representation of @ in L ® L' (indicated as T @ T" P
be defined as follows: = (ES Iig 31 ‘oan

g—>T() @T"(@)

where

(T(g) ® /4 (g)) Em) |m') =ZT55 (9‘)' T'a'u' {9} I3> !8')
and for an arbitrary vector |z): '
(T @ T(@) =) zm%f cam (T'(9) ® T'(g)) |m) Im) =
=§ ("%: Conm’ Tlu (g) T’M'l' (g)) |8) |3’>°

}?nce we see that each element x of L ® L’ is uniquely determined by a set
of n-n' complex numbers Cn,, and under the tati .
components transform as " FopSiERMRCR g Rt

’
Conm® = Z Tom T's'm‘ Cee’ -
Py

8) Where it is convenient we use for vectors the Dirac notation: |m) for e,, (sect. 2.2).
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It is easy to see that T ® T is unitary when 7' and 7" are; but even in the
case that 7" and 7" are irreducible, 7' ® 7" is not so. However, according to the
general statements in section (3.4b—c¢) being 7' ® 7" unitary, it will be fully
reducible: the space L ® L' can be written as a direct sum of invariant sub-
gpaces [; , which transform according to irreducible representations T'; , (g)?):

LOL =@l
T®T=@T,. i=1...K

Let us choose in each [; , an orthonormal basis of vectors indicated as
|r; 4, &)

where the index r labels the basis vectors of [;,. Collecting all these vectors we
obtain an orthonormal basis in L ® L; hence there exists a unitary matrix

C(m,m'; r, 1, &)
connecting this basis to that previously introduced

|m) |m’) = 3 C(m, m"; 1, 4,a) |1} 0. &)

1,5

734, ) = 3 Clom, m'; 7,4, o) |m) | ).

The quantities C(m,m’;r, i, «) are called Clebsch-Gordan coefficients of the
group G.

We observe that due the fact that I;, and l;3 transform according to equivalent
representations (sect. 3.3a), their elements can be put in a linear one-to-one
correspondence, so that we can choose vectors |r,i«), |s,7B) in such a way
that indices r and s run over the same range. In addition these vectors can be
choosen so to satisfy:

Gar'|T(g)liar) = Gar'|Twu(g)iar) = @pr' | Tiplg)|ipr) = GBr'|T(g)|ipr).
We will always refer to a basis selected in this way whenever we will have to

deal with reducible representations of a group @, calling it the standard basis.

6. Schur’s Lemma and Wigner-Eckart Theorem

6.1. Schur’s lemma

i) Let T', (g) and T'y(g) be two irreducible, inequivalent, finite dimensional represen-
tations of a group @ in the linear spaces L; and L,.

®) In general there will be several irreducible subspaces transforming according the same irre-
ducible representation. These subspaces are distinguished by the additional label &, whereas i
distinguishes between group of subspaces transforming according inequivalent representations.
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Any linear operator 4 mapping L, into L,, such that
Ty(g) A = AT (g) forany yeG

is the null operator.
Proof: Let N, be the set of vectors in L, such that

Az=0 xeN,.

N, is an invariant subspace for 7' (g). In fact if ¢ N, then
AT, (g)x = Ty(g) Az =0

ie.

T,(g)xe Ny, forany ge@.

Then Ny =L, or N,=0. In the first case the theorem: is proved. In the
second case let us call B, the image of L, into L,. R, is invariant for T';(g):

yeR,
i.e. y=Ax
Talg)y = Ta(g) Az = AT, (g)
i.e. Te(g)y ¢ R, when yeR,.

Hence R, =0 or R, = L;. The second case is excluded being 7', and T,
inequivalent, which proves the theorem. ) )
This theorem can be extended to infinite dimensional representations, provided

A is a bounded operator. ) ) ) )
ii) If 7', and T,(g) are irreducible, equivalent, finite dimensional representations

of @ in the complex vector spaces L, and Ly, i.e. there exists a one-to-one mapping
U of L, into L, such that TyU = UT,, then any linear operator A mapping L,
into L, and satisfying

TA=AT,
isa multipleof U: 4 = 4U.

Proof: From
Ty(g)A = ATy(g) and

U-T,(g)U = T,(g) it follows
Ty(g) A = AU T, (9)U

i.e.

Ty(9) AU = AU T4(9)

o that the theorem is proved if we show that any operator A’ which commuter
with all the operators of an irreducible representation of ¢ is a multiple of the unit
element (in fact if this is true we have AU-! = i1 i.e. 4 = AD). _

Any operator A’ has at least an eigenvector x <=0 belonging to some eigen-

value 1:
Ad'z = 1%.



306 G. pE FraNoEscHT and L. Matan:

Let V be the linear manifold spanned by the vectors belonging to this eigenvalue
(V 5= 0). V isinvariant under T (g) in fact:

xeV
implies
) A'Ty(g)x = Ty(9)A'x = AT, (g)x
ie.
To@xze V.
But V 5= 0, and T, is irreducible. Hence it follows V = L,, i.e.
A'=4l.

As before, the theorem is true for any bounded operator 4’ commuting with the
operators T'(g) of an unitary irreducible representation of & in any Hilbert space.
6.2. We use the results of sect. 6.1 to determine the structure of an operator 7',
which is invariant under an arbitrary unitary representation of a group G.

In particular we will determine the form of its matrix elements, with respect
to a fixed basis.

To be definite let g — U(g) be an unitary representation of @ in a Hilbert
space J. We require it to be completely reducible, which is always the case
when @ is compact or finite. Let 7' be an operator mapping J€ into itself such that:
TU(g)=U(g)T forany ged. (1)

J€ can be decomposed (sect. 5.1) into a direct sum of invariant irreducible sub-
spaces:

‘76 — @(@ ll'ﬂ) — @ ga‘x- (2)
For any vector @, € l;,, we have

U(g) Pis € lia

go that we may define an operator U (g) mapping [;, into itself as

Ut (g) @i = U(g) Pia-

Uti=)(g), called the restriction of U (g) to l;,, by hypothesis constitute an irreducible
representation of @ specified by the labels i

(U6 (g) ~ U (g)).
Consider now the vector T'®;, (®;, € I;,). By (2) we can uniquely write
T = %' vis (vip € lip) (3)
and define the operators 7'j3), mapping l;, into I3 as

T Pia = yip; T i = %’ T @, (4)
b
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We use now (1), which gives:
= Uig = UU& P U(#l) TE;E} 45“ = v;ﬂ =
UT P =2 vUs > UP e > >)

— TUD,, = TU &y, = %‘ Tifa U6 By, = %‘ Vi

By definition of direct sum, we then obtain:

Vi = ¥is _
i ) _ i) [T 5
U9 Tg = Ty U ()

U™ 7' are irreducible representations oi(} on I;, and I3, so that we can apply
Schur’s lemma to the operator T'(3) concluding that:

a) T8 =0 when i==j . o

b) T:{':%s;} — Aiaf) Vi3 where A(ixp) depends upon i, ®, f and Vis is a fixed
» 3

operator mapping li, into l;3, such that

U vig = Vizg U™, (6)
In particular, choosing inside each [;, a standard basis (®}*} as in sect. 5.1, the
operator defined as o N
vis i = &P
satisfies (6).
In conclusion, using a), b), (3) we see that:

(@iﬂ, T{p';a) Ll 2{‘5, “ﬁ) aifau- (7}

6.3 Wigner-Eckart theorem

ich i i 3 be seen as a generali-
This theorem, which is valid for any compact group, can be )
zation of the preceeding statements on matrix elements ‘of invariant opgmbors.
Let g — U (g) be an unitary representation of @ into the Hilbert space J. Suppose

we have a finite number of operators T guch that
Ug) ThU ™) = (D @) Tr

(g) i i i i tation of @ labeled by 3. Ope-
where D'(g) is a matrix of the irreducible represen |
rators of (f})lis kind are called irreducible tensor operators transforming as the

representation j. _
Consider now a decomposi
basis (D).

Wigner-Eckart theorem states: ) )
Givgen a set of irreducible operators T} transforming as the representation of G

specified by [, then:

tion of J¢ into irreducible subspaces l;,, and a standard

i) the matrix element:

(T} Bi, PF) ‘ (8)
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vanishes whenever the representation j is not contained in the Kronecker product
of the representations [ and i.
ii) when the representation j is contained in this tensor produect, then:

(T} P, @) = 3 C(ir, Uk; joy) Gol|T"I5B), (9)
r

where C'(ir,lk;jsy) are Clebsch-Gordan coefficients which project the vector
®id} of the tensor product of the representations ¢ and ! into the vector @i
transforming as the y* irrducible component equivalent to the representation j.
(iaHT‘Hjﬂ)}, is a symbo]ic way of writing a number which depends no more
upon the “magnetic” quantum numbers k, r, s, and is called a reduced matrix
element of T%}. In this way the dependenae of (8) upon the magnetic quantum
numbers is lumped into Clebsch-Gordan coefficients, i.e. is the same for any set
of irreducible operators transforming in a fixed way, and here is the main
importance of the theorem.

The number of terms appearing in (9) is simply the number of times the repre-
sentation j appears in the tensor product of representations ¢ and [.

6.4. We want to visualize the important results obtained in last two sections
with a simple example.

Let us consider a representation of § U, which is the direct sum of two irreducible
representations of j = 1, 1/2.

In this case:

(no need for any index like )

H = ll @ ll!l
Ul(g) = Ug) @ Uh(g).

A standard basis is one in which the third generator of S U, is diagonal: vectors
of this basis will be indicated as

l7my)  §=1,%
+ l: 0; ~.1 j =]
mi = 112, ___112 ? _— 1;42_

Consider a set of two operators 7'/:(i = 41/,) transforming as the j =1/,
representation, i.e.

Ulg) TP U(g)* = %‘ (Uh (@ T+, g e SU,.

Let us find the structure of matrix elements of 7"/, using Wigner-Eckart theorem.
From (35) we have

G’y my | T |, my) = Chlsin. 4G, 7).
The decomposition of tensor products involved here is as follows:
Uh @ U'h —m @ U
Ul @ U= Uh @ U'h,
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Hence when j =1 the matrix elements vanish unless j' =1/, and viceversa.

Non vanishing matrix elements are: .
A’ | T Yamy = Cuind AL s
(ym’ | T 1m) = Ot A (e 1)-

poN and SHOBTLEY we find the following

Using Clebsch-Gordan coefficients of CON
structure:

Tl,r. m ? Ti‘a;.
" 1t (0 000 O
0 0 0 A0 11 X
' A 4 0— 0
0 0 0 O 5 0¢ 1 14 oo o 3
00 2
o0 0 00| —1 -1 a4
' 2
0o—%L o0 00 1},] Yall/ge0 © 0 0
V’g‘ s | u
=0 0
0 0 —|fzn o0 f—h S O
1 0—11y —}
m: 1 0 —1 e ._!_’_,...._.5
‘ 1
j: 1 Yy

we sob A(1Yfg) = A A(fs, 1) = p)-
|{Fimal.lly we cgnsldar the case of an invariant

that:

operator, i.e. an operator T such

Ug)TUg") =T

In this case, using formulas of sect. 6.2, we find the following structure:

i (a0 0
1 olo 22 0 0
—110 0o &
1 A 0
lla{_.lt J 0 ih
1 0 —1 Yy —s
1 1y
2

7. Symmetry Principles in Elementary Particles Physics

hysics increasing attention has been given,
les. Particularly, in the physics of elemen-
d exploitation of the g0 called internal

7.1. In the development of Quantum i &
at various stages, to invariance prmclp
tary particles the gystematic inquiry an
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symmetries led, in the last few years, to remarkable successes in contrast to the
unsatisfactory status of dynamical calculations. It appears that, due to peculiar
features of the quantum mechanical description, the theory of group represen-
tations provides the natural device to handle such invariance principles.
Physical laws express correlations among observable events. The latter of course
take place in space and time so that to specify any of them we need certain
coordinates with respect to a fixed space-time frame of reference. In addition we
need some other “internal parameters’ (such as charge, baryonic number etc.)
which uniquely determine the nature of the objects under consideration.
Physical laws are then functional relations among sets of such ‘“‘coordinates”.
Loosely speaking a symmetry is a transformation on the coordinates which
leaves invariant these relations.

There are invariance principles which we believe to be valid for any kind of
phenomena, and these are: invariance under translations in space and time and
spatial rotations. As stressed by WraNER [8], the mere possibility of comparing
results of experiments made in different places and at different times (i.e. the
reproducibility of phenomena) is based on this assumption.

At the same level of universality we accept the assumption that the physical
laws are the same in all frames of reference differing for an uniform rectilinear
motion. All thig is summarized in the statement that Physics is invariant under
inhomogeneous proper Lorentz transformations.

There are many other symmetries in elementary particle physics which are shared
only by certain kinds of processes (as for example is the case for the SU, or iso-
topic spin symmetry which is valid only for strong interactions). We postpone
the study of these topics to a brief sketch of Wigner’s analysis of relativistic
invariance in quantum mechanics.

7.2. In the formalism of quantum mechanics, there is a normalized vector  in
a Hilbert space ¥, corresponding to any physical situation we can get up in
laboratory. The normalization condition determines y only up to a phase factor,
so that what is really relevant is a set ¥ of vectors different from one another
by phase factors. ¥ is called a unit inJ€. There is in addition a self-adjoint opera-
tor A corresponding to any observable quantity a and the connection between
theory and experiments is contained in the statement that the average value
of a in the situation ¥ is

my(a) = (Ay, p)

where y is an arbitrary vector of the ray ¥. As it is well known, any physical
quantity can be written in terms of expressions like:

[(y, @) |*

and these depend only upon the rays ¥, @ to which y, ¢ belong.

It is an experimental fact that physically realizable states always correspond
to definite values of charge, baryonic number (N) and leptonic number (). This
has the consequence that a vector in J which is a superposition of two states
with different eigenvalues of @ or N or I cannot correspond to a physically reali-
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9 breaks up into subspaces called coherent gectors such
iti inci ithi h coherent sector.
t the superposition principle holds only within eac s

g:zh phenopr:eflon is the manifestation of the so-called superselection rules [9, 1 (:1]
Consider now a system prepared in a certain state V. If g is an element of tte
proper inhomogeneous Lorentz group P7 we can apply this tra.nsfou_na{.lql: o
the instruments with which we have prepared ¥, obtaining a new physica tillll ua-
tion of the same system, described by a ray ¥, As stated by W_'lgngr, the theory
is relativistically invariant if the following requirements are satisfied. -
i) The mapping ¥ —> ¥ is one-to-one, and maps each coherent sector n

a coherent sector;
ii)if ¥ — ¥, @ > P, then:

|, @)| = | (¥ ¢9)]

where y, @, y¥, ¢ are vectors belonging to P, @, P9, dI;
iii) (P9) = YW and

zable situation. Hence

wheng —g W7 — P9

quivalent to what is called the hoglo%lem?itg
i i i i ith i kes us sure that all physic

f Minkowski space-time, and combined w1th.1) ma

gperations possible in a given frame, are posalb'l'e in any other frame comlete:’:ted
to it by a Lorentz transformation. Condition ii) tells us that the connections
between any two states depend only upon their relative motion or pogltllloix.
Finally iii) merely expressed the fact that P7 is a group and that two ah% tly
different transformations must produce nearly the sameteﬁ'ect.. From i) and iii)
it follows that ¥ and ¥ belong to the same aol!erent sector.

From i)—ii) it can be shown [11, 12] that there is a unitary operator U (g) corres-

ponding to each g ¢ P7, such that
U@)ye when ye .

The existence of ¥ for any ¥ and gise

U (g) is defined up to a factor of modulus one, in that the_ sqbstitution U(g) =U'(g)
= w(g) Ug) (lo(g)| = 1) gives us another set qf adm;sslb!e og(arators. .
However there exist a neighborhood N of the unit element in P/ and a partic

choice of these phase factors such that
a)geN,g—>Ulg) isa continuous mapping;

b) g.¢,g-¢ ¢ N implies g-g'~>Ulgg) = U@ U),
so that we have a local representation of P/ in . Being
this local representation extends to a representation of the covering group P7.

L . i b P

infinitesimal rators, multiplied by — i, are ten self ?.dlomt opera A

if\ﬂdmgfp mim-‘—- Mg : n(it y=0,1 2p3) P, being identified with the total momen-
v ’ ) y Ly My By

tum (so that P, is the total hamiltonian), whereas
Ji= 3 M My, hk=123
AR

P7 not simply connected

rs of the system. P, and M, are a

the total angular momentum operato : |
ot 3 heir commutation relations are listed

representation of the Lie algebra of Bl T

in [9]. In particular _
[PwPu] Z[J‘:Pol*_—‘ﬁ

99 Zeitschrift ,,Fortschritte der Ppyslk". Heft 7
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g0 that momentum and angular momentum conservation follows from Lorentz
invariance.

From previous considerations we have seen that the only possible relativistically
invariant descriptions of a quantum system are given in terms of unitary represen-

tation of P/ in the Hilbert space of state vectors. When these representations are
irreducible we speak of elementary system. In this case any state can be reached
from a fixed one by means of a Lorentz transformation, and there is no way to

divide the Hilbert space into subsets transforming independently under P7.

The study of the irreducible unitary representations of P/ has been carried out
by WieNER [12] and the results are as follows: each irreducible representation
is characterized by two numbers m and s. m? is the eigenvalue of 3'P#P, in the

representation19) and is, according to our previous identification of P, with the
total momentum, the mass squared of the particle. Hence the only cases of inte-
rest for physics are the irreducible representations with m? >0 or m? = 0.
In the first case s ig an integer or half integer non negative number, and is equal
to the spin of the particle. In the second case s = 0, 4 !/,, 4 1,... and is the
component of the particle spin along the direction of motion (helicity).

A very detailed analysis of Lorentz group representations as well as their appli-
cation to scattering processes can be found in [13].

We conclude emphasizing that from the previous considerations we have extrac-
ted a very precise definition of elementary particle in a quantum theory, at least
as far as its space-time behaviour is concerned: it is a system whose states trans-
form like an irreducible representation of P7, and it is thus uniquely determined
by its mass and spin.

7.3. Apart from space-time symmetries, some kind of interactions between par-
ticles exhibit peculiar invariance properties: in particular we will focus our atten-
tion on symmetries of strong interactions. ,

Should we know the actual dynamical structure of strong interactions then it
would be possible to check directly what are the transformation on internal
labels which leave such dynamies invariant (in the sense of sect. 7.1).

Let us see in a particular model (field theory) what type of conclusions can be
drawn from the existence of a Lie group of such transformations.

This will be a guide for us in the actual situation where we do not know the dy-
namics involved, in order to be able to guess, from certain experimental obser-
vations, the existence of strong interactions symmetries.

Suppose that strongly interacting particles are described by certain fields y, (v)
and by a Lagrangian £ (y,, d,v,).

Moreover suppose that there exists a certain n-dimensional Lie group @ of trans-
formations on the fields

¥a (@) >yl (2) = Uy (@) U = ﬁZ tap s (%) (1)

which leave £ invariant (here the labels «,f8 refer only to internal degrees of
freedom such as charge, baryonic number, hypercharge etc. whereas space-time
labels are neglected).

1%) Due to the fact that 3 P, P# commutes with all the infinitesimal generators, in any irre-

"
ducible representation is must be a multiple of the unit operator.

B e —— S —— Lbo
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Such transformations are induced on the fields by unitary operators U (g) (g € &)
which are a representation of @ in the Hilbert space of the strongly interacting
particles. The infinitesimal generators multiplied by -i are n selfadjoint opera-
tors Q. Their expression in terms of the fields can be found by requiring that the
infinitesimal transformations leave unchanged the Lagrangian. In fact one can
construct in terms of the fields n divergence-free currents

JEx) k=1,...n

mJE(@) = 0 @)

guch that the operators
f JE (x) d3x

satisfy the commutation relations characterizing the Lie algebra of @, and are just
the infinitesimal generators of the transformation (1). From (2) it follows that
such operators are constant of motion (this result is just the quantum counter-
part of the classical Noether’s theorem [14]).

Consider now one particle states. They are obtained by applying to the vacuum
state a creation operator al, (again space-time labels are omitted) which obviously

gatisfies
Ua; U-' = 3t 40}
I

g0 that
Ual | 0) = %“aﬂ (a5 | 0))

i.e. one particle states transform like a representation of @. Moreover, since the
Q.’s are constant operators, the Hamiltonian which is the time displacements
generator, commutes with them, being therefore an invariant operator under G;
the same applies to the mass operator. If G is compact, then the representation
of @ over one particle states is completely reducible and the irreducible compo-
nents correspond to states of particles with the same mass.

‘We can simultaneously diagonalize a number of @ equal to the rank of @, then
we find multiplets of particles with equal masses, distinguished (apart from
possible degeneracies!!) by the eigenvalues of the diagonal @y’s, i.e. by certain
“internal” quantum numbers.

Passing to multiparticle states we observe that they transform under @ as follows

Uat.a3s...|0) = Uai, U Uagy U ... | 0) =
= 2; bilino S0l dagcaa FO))

(1,2 ... take into account space time as well as other degrees of freedom which
are uneffécted by @) i.e. as tensor product of one particle representations.
Suppose

lat, 1) 165, 2); ...
to be one particle states which are eigenstates of @ with eigenvalues g%, ¢%, . . .
Then, under the unitary transformation U = (1 4 i£@;), the multiparticle

1) This happens e.g. in the case of S U,

23+ .
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state
lgt, 1) 1465, 2) ... (4)

transforms as
(A +ie@) g 1) g5 2) e = (1 +ieQ) | gh 1) (1 +ieQe) [ g 2) e =
=g 1) 1g5 2) e +ielgh + g5+ ) lah D 1g% 2) - +0(E)

and we conclude that the state (4) is an eigenstate of Q; with eigenvalue ¢} + gt +
+ .-+, i.e. the @)'s are additive conserved quantities.

In conclusion: starting from invariance under an n-dimensional Lie group @, we
have found:

a) n additive conserved quantities (in general not all simultaneously diagonali-
zable);

b) a multiplet structure for the one particle states;

¢) consider furthermore the scattering of two particles into an arbitrary multi-
particle state. The corresponding amplitudes are given by the matrix elements
of the S-operator which, being a function of the Lagrangian ¥, turns out to be
an invariant operator under @, as ¥ is. We already saw in sect. 6.2 the general
structure of matrix elements of such an operator between states belonging to
arbitrary representations of the group @. That analysis tells us that symmetry
ander G severely restricts the form of the S-matrix, leading to relations between
amplitudes of a-priori uncorrelated processes.

At this point one remark is in order. It may well be (and this is the case for
isotopic spin or S U, symmetry) that not all the @;’s commute with charge, or
with some among the other observables which define a superselection rule. When
this is the case these @,’s do not have a complete set of observable states and their
conservation cannot be directly observed. If the symmetry has to be useful, at
Jeast a number equal to the rank of @ among the (s has to sommute with each
observable defining a super selction rule (as well as among themselves), in order
to use their common eigenvalues as labels for physical states. Point a) is then
reduced to the existence of at least r additive mutually commuting conserved
quantities (r = rank of ).

A simple example of an invariance principle which can be treated in this way
is the so called first kind gauge invariance.

Suppose the following transformations to leave unchanged the Lagrangian: for
any Hermitian field ¢: ¢ —> ¢

for any non Hermitian field ¢ corresponding to + 1 charged particles: y — ety
for the adjoint field p : p — e7*y (a real).

They constitute a one-dimensional Abelian Lie group!?).

12) This group called U, has as elements the complex number €i* (x mod 2 ), with the multi-

plication law:
el gilﬂ = ¢t (& + BJ,

As for any Abelian group, its irreducible representations are one dimensional: in fact let
¢ic > U (x) be an irreducible representation over a linear space L; then for any fi

Ulx) U(f) = U(p) Ul(x)
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The corresponding conserved current is the charge-density current, and point a)
expresses charge conservation. However being this group Abelian, its irreducible
representations are 1-dimensional, so that each resulting multiplet contains only
one particle. In this case there are no consequences other than mere charge con-
gervation.

Conservation of any additive charge-like quantity (e.g. baryonic number or
hypercharge) can be obtained in this way.

7.4. On the basis of previous considerations it should be clear how things actually
go. Strong interactions display additive conservation laws, and moreover the
great variety of strongly interacting particles (hadrons) seems to divide naturally
into sets of particles with very analoguos properties (for example o+, n—, n%; K+,K°;
p,n and so on). One takes these experimental facts as an indication that the
underlying dynamics possesses a non abelian symmetry-group. Then one tries
with some Lie group and compares with experiments the relations which can be
found in the way outlined before.

Imagine a world in which only proton, neutron, =+, n~, =% are present, as was
the situation at the time when the isotopic spin was introduced.

The mass spectrum of these particles provides a very clear evidence for the
existence of a non Abelian symmetry group, whose representation on one particle
states splits up into two components, the pion and the nucleon. Inside each
multiplet, particles are distinguished by only one quantum number (charge),
so that we are led to a non Abelian Lie group of rank one. As we will see later
there is only one compact simple group of this kind, i.e. SU,. Its Lie algebra
is spanned by three elements T, T, T}, satisfying the product rules of angular
mox}?e?tum, and its irreducible representations are labeled by a number 7'= 0
such that: -

i) 2T is an integer:
ii) the dimension of the representation is 27 + 1;
iii) the spectrum of 7'y consists of numbers 7,7 — 1, ..., — 7.

We have then to assign the nucleon to the T = !/,, and the pion to the 7" =1
representations. 7' is called isotopic spin (I-spin) [15].

If we assume, as a convention, that particles correspond to eigenstates of T,
then 7'y has to be connected to the charge operator. In fact the following relation
holds for pions and nucleons:

1 .
Q — 5 N =17, (N = baryonic numker). (5)

In this context we have two additive conservation laws: charge and baryonic
number. The latter is derived as invariance under a gauge group, whereas charge
conservation is included in isotopic spin conservation. Note that 7', and 7'y do
not commute neither with 7'y nor with charge, so that they do not correspond
to observable quantities.

so that (Sc‘lmr’a lemma) U(x) = A(x) - 1. Hence L has to be one-dimensional. Trreducible
representations are of the form

ei® —» 1, (x) = ek, where k is an integer.

.
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Consider now a © — N system. Under SU, it transforms as an element of the
tensor product of the I-spin 1 and I-spin !/, representations. It is well known
that this product splits up into an I-spin 3/, and an I-spin !/, representation. If
we want to study a seattering process of the type

n+4+ N->a 4+ N (6)
we have to evaluate matrix elements of the type:
(xN|S|="N") (7)
where S is invariant under S U,. Writing
| =N} = City |*fs Ty) + Cay | }a Ts)
with the aid of Clebsch-Gordan coefficients, (7) writes as:
Ciy Can (s Te | 8|3y T3) + Ciy Chx- Cla T3 | 8| T3) +
+ Chy Cron (e Ts | S 12 T3) + Cha Can (2 T3 | S 13 Tg).  (8)
Using the analysis of sect. 6.2, we see that
(la Ty | 8133 T5) = dp, 7; A°
(M2 T3 | 8|y Tg) = 01, 7; 47,

where 43 and A! depend only upon space-time labels. All the other matrix ele-
ments vanish. In conclusion we can express the amplitudes of all processes like
(6) in terms of only two amplitudes which are function of space-time variables,
but do not depend anymore on the charge variables.

1t is a well known fact that experimentally at an energy near 190 MeV for the
incident pion the amplitude A% greatly dominates: neglecting A' we find at
that energy a well determined ratio for the following processes:

a) ot +p-=>nt 4 p

b) i~ +p-—>n +p

e) == 4 p—>=® 4 n.

Rate a: Rate b: Rate ¢ = 9:1:2 which is well verified experimentally.

Since isotopic spin has been introduced many other hadrons have been found,
together with another additive conservation law: hypercharge (¥) conservation.
However all hadrons still fit well into isomultiplets when relation (5) is modi-
fied as

and all the experimental findings are consistent with the assumption that strong
interactions are invariant under SU, [16]. In this context, as for baryonic number,
hypercharge conservation is considered to derive from invariance under a gauge
group, quite independently from isotopic spin conservation.
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This situation can be summarized stating that the symmetry group for strong
interactions is the direct product!?®) of two gauge groups (N and Y-conservation)
times SU, (I-spin conservation). As a consequence N, (7', T';) and ¥ quantum
numbers appear in a completely uncorrelated way.

7.5. Unitary symmetry models

In unitary symmetry models one tries to derive Ty and Y conservation from in-
variance under a group which does not break into the direct product SU, x U,(Y),
introducing in this way relations between particles belonging to isomultiplets with
different hypercharge. It is a fact that as yet nobody has succeeded in extending
such procedure to include N-conservation which, as before, is derived from a
separated gauge group [17].

The feeling for such a higher symmetry is not strongly substantiated at first sight
by experimental evidence. In fact according to results derived in sect. 7.3) par-
ticles would be organized into supermultiplets, (i.e. irreducible representations)
behaving as elementary objects under strong interactions; but now inside same
supermultiplets there would appear particles differing by Y as well as by 7.
This is in conflict with the experimental evidence in that Am/m between particles
differing by Y are quite large and not imputable to non strong interactions (for
example my — my = 175 MeV, mg — my = 380 MeV). Hence we must conclude
that the idea of a higher symmetry in the sense above specified, cannot be literally
applied.

Nevertheless the following interpretation has been proposed : there is a symmetrical
component in strong interactions which is responsible of the gross structure of
particles world ; in addition there is a weaker component to be treated as a per-
turbation responsible of the departures from the exact symmetry. It is understood
that both components are charge independent as well as strangeness conserving.

1) Given two groups @, and G, their direct product &, X @, is defined as the set of ordered
pairs (g, g4) (9; € ;) with the multiplication law

(91> 92) (s f2) = (9115 92fs)-

This definition satisfies all the required axioms. Given a representation g; — U(gs) of G;
on the linear spaces L;, we can find a representation of @, X @, in the direct product L, x L,
as follows

(91, 92) = Ulg) @ Ulgy) = U9y, 92)

and it can be shown that all the representations of @ = @, X G, can be put into this form.
U(gy,g,) is irreducible if and only if U(g,) and U (g,) are. In our particular case we have the

group
8U, x Uy(N) x U(Y)

specified by the triplets (x, B, g) (x, f real, g € SU,).
In a space spanned by 2 T' + 1 vectors

IN, Y;T,Ty), -T < T, < T, N, ¥ fixed
an irreducible representation of SU, x U,(N) x U,(¥) has the form:
(2, B, g) — €'Y eia¥ D(T)(g)

where D(T)(g) are matrices defining an irreducible representation of SU,.
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It should be noted that the weaker component has not been till now satisfactory
identified. However the idea of a simmetry breaking interaction treated as first
order perturbation, has provided us with corrections to the predictions derived
from a pure symmetrical model, which are consistent with experimental findings.
7.6. Previous reasoning obviously do not indicate us what the symmetry group
for strong interactions actually is. Following general requirements however seem
to be quite reasonable, and are usually imposed on possible candidates:

i) this group must be a Lie group. In fact we want to identify additive conserved
quantities such as 7'y and ¥ with its infinitesimal generators;

ii) is must be compact: this assures that its irreducible unitary representations
are finite-dimensional, so that wen can fill up resulting supermultiplets with a
finite number of particles (see sect. 2.2);

iii) it must be semi-simple (see sect. 4.4). This restriction is mainly due to practical
reasons: for semisimple Lie groups in fact there is a complete mathematical theory,
which is not the case non for semisimple groups;

iv) the rank of the group, i.e. the rank of its Lie algebra, must be two, because we
require two conserved commuting quantities i.e. Ty and Y;

v) is must contain a subgroup isomorphic to SU, in order to recover the isotopic
spin symmetry. Actually this does not bear any restriction in that any semisimple
Lie group has this property (see later sect. 9.7b).

To construct a concrete theory we need at this point a characterization of Lie
groups as well as a classification of their irreducible representations.

In next sections we will study these topics with some detail.

8. Structure of Semisimple Lie Algebras

In sect. 4 we studied the relations between Lie groups and Lie algebras, and the
conclusion achieved was that there is a one-to-one correspondence between Lie
algebras and Lie groups, so that instead of studying Lie groups one can study the
corresponding Lie algebras and their representations, which is more convenient

by a mathematical point of view.
8.1. We have given in sect. 4.4 the definition of n-dimensional Lie algebra of

rank r. At the same time we noted that the mapping
z—ade xzec¢f

ad z(y) = [z, y]

is a representation of ¥ called its regular representation.
In terms of it we can define in ¥ a bilinear form as follows

(z, y) = Tr (adz, ady). (1)
Obvious properties are (@ = real number)
(a2, y) = (@, y);  (®+y,2) = (x,2) = (y,2) (1)
(@ y) = (y, 2)

[[Z, .',L'], ?f) 2 (.’.\‘3, [z’ 9]) ¥
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The follc'n?ing very important theorem has been proved by Cartan:

£ is semisimple if and only if (x,y) is not degenerate, i.e. if (z, y) =0 for any ye £,
implies z = 0.

This criterion is essential in the classical theory of semisimple Lie algebras. Fur-
ther'more tl?e. most important results of this theory heavily rest on the possibility
of diagonalizing operators ad 2 where x runs over the elements of a Cartan sub-
algebra € of ¥. Now in £ there are surely eigenvectors of ad (x) (in fact for each
element y € € we have:

adz(y) = [x,y] =0 x,yec¥

8o that € is an eigenspace of ad (z) belonging to the eigenvalue zero) but in general
in £ (which is a real vector space) a complete system of such eigenvectors does not
exists (see later the example reported in sect. 8.7a). The way out of this difficulty
is to englarge £ to a complex Lie algebra in which structure theory can be easily
carried out. From it, as we shall see later, corresponding results for the real semi-
simple Lie algebras associated with compact Lie groups can be deduced.

8.2. Complexification

Ity is a real semisimple Lie algebra, we can construct its complex extension ¢, by
cho_oamg a basis 2, in ¥ and considering the set of all linear combinations of this
basis, with the product between two elements defined as follows. If

2 A% (A, py = complex numbers)

1n

k
1

2

b
y=§m%

then
in 1n
[.’.t, ?}] == Z 'q'hul {xh xb] o Z Al.uiozhx!
hk hks

where C’i‘: 5 are the structure constants relative to the basis choosen in #. This pro-
duct satisfies condition 4.4ii), and obviously this definition of ¥ ¢ does not depend
upon the particular basis choosen. In ¥, the form (x, y) is simply

(2, y) = 3 Anpus (%, 2).
Ak

This form is not degenerate if and only if det(x;, ;) &= 0; this condition is the
same whether we consider ¥ or ¥, so that if ¥ is semisimple so is .¥',. In addition
the rank of ¥, is the same of that of #.

8.3. Structure theory

We will be content here to state without proof all results relevant for applications.
A complete derivation can be found in the excellent book by Jacosson [18]%4).

M) An easier treatment can be found i i iti
el « e found in [79]. See in addition the very readable paper by
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In the following by ¥ we mean a complex semisimple n-dimensional Lie algebra
of rank r and by € one of its Cartan subalgebras. .

1. Any operator adk, k € €, is diagonalizable in £. If k,, . . . k, is a basis in ¥, and
€a,..a, i8 & common eigenvector of ad h;’s(ad k;(e,,...,) = ®;€,,...,), We have for

any element h ¢ €:
1,7

= B
1
adhe,, ..., = (}: ii“i) Easiiop

g0 that it sufficies to sonsider only the diagonalization of operators adh;.
II. h;’s can be choosen in such a way that the «, are all real. Upon introducing the

notation o = (&, ..., ) we write
adk,-e, = X;€,-

The real r-components object « is called a root vector, or simply a root. ¥ splits up
into a direct sum of common eigenspaces of adh;(t = 1,2 ...71)

L =2,D L. (2)
where the direct sum runs over all non vanishing roots and .7, is the eigenspace
belonging to the root (0, ...,0). Obviously £, contains ¥, but a stronger
result holds, namely
III- ' f [ g: (3)

and furthermore each ¥, (x == 0) is one dimensional.

It follows the there are » — r non zero roots.

We can extend the basis {k;} to a basis in ¥, adding to these elements all the vec-
tors e, where « is a non zero root and e, is a vector spanning %,.

IV. Consider the restriction of the trace form (1) to €. It is determined by the matrix:

‘gi; = (b, by) = Tr(adh; adk)), 4,0 =1, 250000 (4)
In the basis {h;, e,}, the operators
adh; adh;
are diagonal, and have eigenvalues equal to a;e;. Hence

gij = > a;o;  (the sum runs over all roots) (5)

which implies g;; to be a real symmetric matrix.
As a consequence g;; can be diagonalized with a real orthogonal substitution:

gt = %‘ Ay Ajpgin = 4645

Upon introducing
k: = %‘ Aik }.‘*
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which corresponds to a change of basis in €, we see that:
a'dk;eu = (Z Aﬂ'“&) €, = C(;G‘
E
and «} also are real numbers. Then:

Tr(a.d k: ad}.l;) == Z Kygky = %‘ AikAuGu === 9’:; = 2"5”.

Hence
Av =gy =3 (a})* 2 0.

Suppose that for some value of ¢, 4; = 0. Then &} = 0 for any «, so that
[h, e.] = 0.

Moreover
(A}, k] = 0,

i 7%

so that ad A} is represented in the basis {h, ¢,} by the null matrix.
This has the consequence

(kfyx) =0 forany =zelf

i.e. (by Cartan’s criterion) 2} = 0 which is excluded.
In conclusion we see that g;; is a non singular, positive definite, real matrix. We will
indicate with gV its inverse

%‘ gug® = dy;.
With the aid of this metric tensor we define a scalar product between roots:
(2, ) = 2 &'fi = 3 i’ = ; xifig”. (6)
L i .

The difference between «f = X' gix; and «; can be removed by performing a real
linear transformation on Ay’s, which reduces g;; into the form 48;;. In this basis the
scalar product between roots is written as

(x, B) = 23 &ifi.
In the basis {k, e,} part of the multiplication rules are defined in terms of roots
[ki, ] =0
[h.', e,] = i{€4.

We will see that the same applies to all multiplication rules between h; and e,,
in the sense that roots determine all the structure constant relative to the basis
{hi, ¢,}. This depends on peculiar properties of roots, which are the very heart of
structure theory.
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Properties of roots.
In the following kx and « + f are defined as

koo = {kay, .oy la)
x 'I"ﬂ = [0&1 + ﬂli eoey By '+ ﬁr)

V. If « is a non zero root, then k « is a root (k = real number) if and only if
k=410

Hence the n — r non zero roots are distributed in pairs &, —o. (From this we see
that » — r is an even integer for any semisimple Lie algebra).

VI. Any two non zero roots «, f, (x + f == 0) uniquely determine two non negative
integers r, ¢ such that

B f— (= Do by g

are the only non zero roots of the form g - kx. This serie of roots is called the
a-gtring containing f. Interchanging « and § we obtain two other integers ¢', '
~ characterizing the f-string containing «.

Numbers r, g satisfy the condition:

(x, £) . ; (e, B)
_ = 2 — S— - 2 o e cap g s | 7
rT1=2Ga 172G )
Being in addition
—rsg—r=q (—r'=q¢—r=yq)

we obtain that if x and f are non zero roots, then

2(x, f) _2wh) &

fid

F—o * *~@h

- are non zero roots. The first (second) os obtained by reflecting f («) with respect to

the plane orthogonal to « ().
- The general feature of the multiplication table can be understood in terms of the

following relation:

a‘dki [ea! eﬂ'] = [ki’£ea’ eﬂ“ s {(X( + ﬁl) [eu) eﬂ'] (9}

- which is a simple consequence of Jacobi identity.

We distinguish three cases: g

a)x + f = 0, « 4 fi8 not a root.

In this case eq.(9) implies, [e, e;] = 0. Otherwise [e,, 5] would be an eigenvec-
tor of A; and x 4 8 would be a root.

b)x + g =0.

Hence ad k;[e,, e-,] = 0 so that [e,.e;] € € and we can write:

[ea) e—a] = 2 Zilki'
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VII. It is possible to normalize e,, e, so that (e, e_,) = Tr (ade, ade_,) = 1.
With this choice it results:

M=ol = fZ' g7 &,
[t ] = Z"gﬁ“iks‘ —= %‘ «'hy. (10)

We note that this normalization determines e, and e_, up to factors d,, d_, such
that d,d_, = 1.
¢) « +p =40, o« +p is aroot. By eq. (9) and by unidimensionality of .., it
follows:

[8“ eﬂl = Nﬂﬁec-l-ﬂ'
One can show that

Nep=Npop=N_op.=—Np (11)

and in addition, by disposing of factors d,,d_, in e,, e_,, one can assume

Naﬁ = _N—ﬂ.*"ﬂ' (12)
In this case
VIIL Ny, =2E D 4 p) (13)

where ¢, and r are the integers determining the x-string containing . We see that

when « + f is a root, N,z == 0.
This relation determines N,z up to a sign which must be chosen so to satisfy (11),

(12).
Collecting all these results, we can write the complete multiplication table relative

to the basis {h;, e,, e_,}:
[k, k] = 0

[ki: e:I:.st] = i“ieia
[ea) €] = ; ot hy = § ohigt (14)
(0 4 —f,x + p is not a root) = 0
ol =[x —pa+p isaroot) = Nyeus

All structure constants relative to this basis are determined by roots and are all
real. In addition a linear non singular transformation on the /s does not change
the form of these products. In fact if we have

}1.: — ZAﬁhii, ?lr]i = 2 = (A_l}]'l' k:’
i 1]

then
[k;! e:l:a] = 2 Al'i[his ej:a} — :!:(%‘ Al'.i a!') €rs = 0&; €iq
]

[em g-m] = Z 0“-}5‘ = ,Z; o (A_l}“ ]‘i = ;‘O‘ka,
1 L



324 (. pE Francescur and L. Marans

where
of = Ljdioy; ot =3 o' (A7),
i
so that «; and &/ transform respectively as the covariant and contravariants
components of a vector. g; transforms as a covariant tensor:

g = (A%, h;'} = %‘ AgAagu, (15)

so that the scalar product between roots is dependent upon the particular basis
choosen in €. From this it follows that although there are in € bases in which s
are complex numbers, in any case (x, «) is a positive number.

By (14) we see that the roots of a Lie algebra, determine uniquely its structure.
Hence a classification of semisimple Lie algebras of rank r is equivalente to find all
gets of r-dimensional real vectors which satisfy V, VI, (7). This is the argument of
next section.

8.4. To begin with we introduce now an ordering between roots in the following
way.

Given two roots « and B, « is said to be greater than § if the first non vanishing
component of & — f = (x; — f;) is a positive number. In particular a root is
positive if it is greater than zero.

Of course this ordering depends on the basis choosen in € and it is the same that
the ordering of words in a dictionary.

We introduce another useful concept. A root « is simple if:
a) « is a positive root,
b) « cannot be written as sum of two positive roots.

Two important properties of simple roots are nearly immediate.
If x and § are simple roots, then: )
i) & — B is not a root. If « — B were a positive root, then a would be equal to
(x — B) + B, i.e. would not be simple. Conversely if « — f were a negative root,
then § — & would be positive, and § would be equal to (f — &) + «, ie. f would
not be simple;
ii) («, #) = 0. By i) if we consider the x-string containing f, we see that r = 0, so
that

2(x, E} —

(x, &)

—g=—q=0.

The usefulness of considering simple roots lies in the following theorem:

IX. There are exactly r linearly independent simple roots which we will indicate
with a, ... a. Furthermore any positive root can be written as a linear com-
bination of simple roots with non negative integers as coefficients.

X. if & > 0 is a non simple root, there exists a simple root a(®) such that « — a®
is a positive root.

We will see later that properties IX), X) enable one to construct all roots starting
form simple roots. This limits further analysis only to simple roots.

From (7) we can derive very severe restriction on the angle between two roots as
well as on the ratio of their lenghts. In fact it is:

wa) " BB

g

T U T
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ie.
(2,8 _m-mn )
G B & =l
if mns0
degd) o8
@8 m

When « and § are simple roots, m and » are non positive by 8.4 ii) and furthermore
« == f so that the only possibilities we are left with are:

m " Pap (=, )/(B, B)
—1 —1 120° 1
-1 —2 135° 2
—1 —3 150° 3
= —1 135° 1,
—3 =1 150° A
0 0 90° arbitrary

In addition in the latter case (¢,5 = 90°) neither « — f, nor & - f are roots (see
properties 8.41i, ii).
8.5. On the basis of stated properties of simple roots, we illustrate the classi-
fication of (complex) semisimple Lie algebras.
Let us first examine the case in which simple roots split up into groups of simple
roots, such that any root of each group is orthogonal to all roots belonging to
different groups, whereas inside each group there is no root orthogonal to all the
other ones:

PO A PR © RO L PR O NIV LS

rntrgt+ o Frm=r.

The whole root: diagram splits up into mutually orthogonal parts o, ..., 8. . .5 . . ;
y,...andin additiona 4+ f#...;...« 4+ p,...; 8 £ ... arenot roots, so that
for the corresponding e,,...; €3, ...;€,... we have

[e., 51 =0, [e,,e,]=0 andsoon.

Furthermore one can choose in % a basis of A/s which also decomposes into
groups of vectors (hY,...AN; AP, ...k ;... such that for example

(A, e = 0. ..
(AP, e,] =0...

Summarizing we see that the basis {h;e,,e_,} can be decomposed into the direct
sum of bases (A, e,, e}, (h®, e5, e}, ... (A", ¢,, e} such that all products
between elements of different groups vanish.

Each linear manifold spanned by such bases is evidently a subalgebra in .¥ and it
is even an ideal, so that the existence of roots orthogonal to all the others implies ¥
to be not simple. The converse is also true, i.e.
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X1. Necessary as well ag sufficient condition for a semisimple Lie algebra to be
simple is that ¥ has no simple root orthogonal to all the others.

From XI and from the previous considerations it follows that any semisimple Lie
algebra is the direct sum of simple Lie algebras (Weyl’s theorem) so that the classi
fication of semisimple Lie algebras is reduced to that of simple one.

Classification of simple Lie algebras

As it should be clear from last section, the problem of determining all simple Lie
algebras of a fixed rank r, is equivalent to finding all sets of r simple roots satis-
fying V, VI, (7), and the condition, that no one of them is orthogonal to all the

others.

The essential results of the structure theory can be formulated as following.
XII. Lenght of simple roots can assume at most two values.

Keeping this in mind, the set of simple roots of a simple Lie algebra can be con-
veniently described in a graphical way introduced by E. B. DyNKIN:

{1) to any simple root we associate a circle:

(2) two circles are connected by one, two, or three lines when the angle between
corresponding roots is respectively 120°, 135°, or 150°.

If the roots are orthogonal, circles are not connected.

(3) Circles corresponding to shorter roots are blackened.

The only simple algebras are then defined by following diagrams (for any fixed r):

Nome of the g s - : :
slpehes Dynkin diagram Dimensionality Remarks

4, 0—O0——:++—0 ot 2) rai
mt a'z wf'
&—0O0—0O0—+-0—0 2 1 =9

o Xy &py & &y St r=
O—0—0— 800

C, &, ., a, @, r(2r 4 1) r=2

@&p

D, O—O—see r@r—1) yi=>3

&; «, W O&r g

These algebras are all distinct when r = 4, wherease we note that:

i) when r = 1 there is only one simple Lie algebra, i.e. 4,;

ii) when r = 2, Dynkin diagrams of B, and C', are identical, i.e. B, and Cy, having
same dimensionality and same structure constants are identical;

iii) when r = 3, 4, and D, have the same Dynkin diagram so that again 4; = Dy,
Apart from these four classes, there are five exceptional Lie algebras, named @,,
F,, By, E;, Eg, defined by the following diagrams:
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Name Diagram Dimensionality
G [ ———0] 14
a &, @,
F, o—C—— 62

By o_.o_g_o_o 8
E, N 3 — 1 ST
Ey o—o—-o—o—g—o—o 2

In particular there are only three distinct Lie algebras of rank two, ie. 4,
03 — Bg, Gz. )

8.6. Classification of simple, compact Lie groups

As said in sect. 7.5 these groups are of the main concern in unitary symmetry
models. To any of them we can uniquely associate a real Lie algebra #,, and it is
remarkable that, as showed by H. WEYL, the compactness of the group reflects in
#,inthat its trace form (1) is negative definite. In view of this circumstance, £, itself
is called a compact (real) Lie algebra.

To carry out structure theory it has been convenient to consider complex Lie al-
gebras. Now, whereas any real algebra £, uniquely define its complex extension
¥, the converse is not true, in that the same ¥, can be obtained starting from dif-
ferent real Lie algebras i.e. from different Lie groups (this is for example the case
of R, and of the 3-dimensional Lorentz group, which have the same complex Lie
algebra 4,).

However, as again has been showed by H. WEYTL, for any semisimple complex Lie
algebra ¥, there is essentially one real semisimple compact Lie algebra whose com-
plex extension is #,. This has the meaning that in ¥, there exists a basis such that:
i) all its structure constants are real;

ii) the real Lie algebra spanned by this basis is compact.

In particular starting from the canonical basis {h;, e,, e_,} it can be easily shown

that the basis ;

fi=—ihy  fo=—de. +e); g.=—(a —e) (16)
(x runs over positive roots)
is compact15),
. 8.7. Examples
a) SU,
We have seen in sect. 4.1 that the real Lie algebra associated to SU,(R,) is span-
ned by three elements I,, I,, I; with the product rules:
: [Il,Ig]=Iaa [Is: L] = I, s, I1] = I,.

18) To verify that (x, ) < 0(x == 0) whenever x is a real linear combination of the elements
(16), one has simply to use the orthogonality relations (h;e,) = 0, (e,, €g) = 6_, g which
follow from (1°) and from the normalization condition (e,, e_,) = 1. '

24 Zeitschrift ,, Fortechritte der Physik*, Heft 7
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This is a 3-dimensional simple Lie algebra of rank 1. For the general element
x = > ¢;I;(c; real) it is easy to see that Tr(adzadx) <O as it must be, being

L]
SU, compact. Let us choose Iy as the element spanning €. Finding roots is equi-
valent to solve the following eigenvalue equation (with « == 0):

adly(x,) = [y, 2] = ax,, 2, =0 1) + c3ly + ¢l

which is equivalent to:

{ €, = &Cy, ; )
ie. &= 41t ¢3= Fic.
€g = —ac

If we introduce the elements I, = I, 4 I, (which are in the complexification of
our algebra!), we have

{Is: Ij:]= :FiI;I:t [I-h I—}: _'21:.{3
so that, by posing
; , i
hg = ily; ei=§I:t

we obtain the product rule
[hy, €] = L€ .

We observe that Tr(adhg adhy) = 2 so that the metric tensor (which reduces to
a number g) is g = 2. The contravariant component of the single positive root is

1 1
& —Ea,—-g

so that we have
' 1. 1
[e’+,e~]=_2_[eﬁr,e’_] hs=_2_ hy

being (¢/,, e..) = 1 as one can easily verify.

Root space is one-dimensional, and we have two non zero roots: 4 1, and one
gimple root. The corresponding Dynkin diagram is made of a single circle, so that
this Lie algebra is just 4,.

Usually as basis are taken the elements

hy, e, = Vée’i ((e4, e0) = 2)
whose product rules are
[hy, €] = tey
[es, e-] = hy
and this we will do in the following.

b) Recalling the product rules (14) which are the canonical rules for any semi-
simple Lie algebra ¥, we see that the elements of .¥, defined as:

B — Ziw'hi €4a

5= ma) T (@ o)k
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satisfy the relations:
[, €ia] = + €4

{ef, el ) = ht.

Hence k., ¢/, , span a subalgebra in ¥ which is identical with 4,, so that by the
considerations made in sect. 4.4 we see that the compact group associated to any
¥ contains subgroups isomorphic to SU,.

c) A,

We start from the Dynkin diagram: 0—O
TFrom this we see that there are two simple roots a® and «® of equal lenghts,
making, an angle of 120 degrees:

2, a®@)  2(xD, x@)
(™, a®M) = (@® a®)

Hence the &Y string containing «(® consists of the two elements a®, &) | (2
and the reversed string contains a® and &V + «®. 4, is 8-dimensional and has
rank 2, so that we expect six non zero roots at all: in fact they are

+a®, 4 a® 4 (D 4 a®),

The root diagram is a regular hexagon (see fig. 1).

aft)

o

al.t.l v a® .

(2)
ciﬂ a

a) b)

Fig. 1. a) Root diagramm of SU, b) Root diagram of G,

In order to construct explicitly our Lie algebra, we evaluate now covariant com-
ponents of &’s («;) in a fixed frame of reference in €. Each choice of the frame will
lead us to a well defined set of structure constants in a certain basis {k;, e,, e_,}.
'].hhe most convenient choice is to refer a’s to orthogonal axes, i.e. to axes such
that:

(Bi, hj) = gij = 3 aicx, = 4.
In this case af = «,.

24%
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In the notation of the fig. 2 (were we have relabeled the roots and for simplicity
we use lower indices):

1 =
& = (— 0) gij = D & = 0y

1
{“1: “1} — (0&2, 0‘2) = (0‘3} “S) T E

h2
3 flove 2
S . 0)_.
1 l (ura“' h,
1
DA B VT ey
Fig. 2.

In terms of these components, we can write the following product rules:

! 1 i
LAy, e44] = j:]fT-‘; ex1, (b eip] = _1:2*'/—2— erg, [hi, 48]l = ‘Em— €3

| 1
[y, €x4] =0, [hy, €5,5] = :E;“‘;' ery, [hy, eps] = F o €43

/3

. 1 i 1 ;
[ey, e] = —,ﬁ by, leg €] = 2 Vs- hy + ) hy, ey, €3] = 2}(? h

1
I_Eka.

To complete the multiplication table we need the quantitaties N,;. By relations
(11), (12) we see that we can arbitrarily fix only one sign in N,;; for example we can
fix the sign of N,,. Using (13), we have
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go that the remaining multiplication rules are

1
[e2, €3] = 76 € [es, 4] = "‘r €3
[ee]=i-e [er; el = ——e
1» ~-§. _VE 2 1 C—2 V-é‘ 3

: 1
les, e-1] = V_g ey [eg, 0] = ‘V—g

The compact basis is:

; 2 f8 3
g = —1i ﬁkl h=—1 VE (ey + ) Ay = "‘V‘é‘ (e — ey)

- .1/3 3
ia:**}/gkz , 1‘:—31/5 (€3 + e—s) 35=—]/§ (e — e_g)

1/3 3
ls:_‘l/i{ea"Fe—s) 37:'_]/?(93“'3-—3)-

We note that this basis differs from that given in (16) only by real factors which do
not affect its compactness and have been introduced in order to have product.
rules of the form

1,8
[, &) = 3 frimAn Lk=1,...8
L

where f,, is the completely antisymmetric tensor given in [3]. fj,, defines the struc-
ture constants of SUj,, (see sect. 1.7), which is then the compact group associated
to 4,.

d) Calculation of roots
We outline here a method of calculating the roots of a simple Lie algebra based on

properties IX, X of simple roots.
If o is a positive root we will say that « lies in the #t" level when:

o= ko®, n=3k.

Property X) makes us sure that any root of the nt" level is obtained by adding a
simple root to some positive root belonging to the (n — 1) level. In particular if
the nth level is empty, all the successive levels are also empty.

Suppose we know all roots up to the n'! level, and let « = 3'k;x'") belong to such

7
level. Then we can ascertain whether « — lx®), for any non negative integer [,
(x® is a simple root) is a root or not, so that we know the number r, relative to the
«®.gtring containing x. Furthermore:

2(x, a'®h) 2 (xD), k)

7= Gm, W) — < S, )



332 G. pE Fravcescur and L. Mataxnt

and the right hand side of this equation is a known number (2 (a?, a®)/(a®, «(k)))
is known from Dynkin diagram). In this way we obtain ¢, and if ¢ > 0, & 4 a® ig
a root of the (n 4 1) level. With this procedure, by (X), varying « and a® we
obtain all the (n + 1)™ level roots. Since we already know the roots of the 1th
level from Dynkin’s diagram (i.e. the simple roots) and in addition &) — x® g
never a root when a!? and a® are gimple, this method can be used as a recurrence
procedure to find all positive roots of the given algebra.

Let us try with @;. The Dynkin diagram is:

[e=—=
@, a,
and from (15) we obtain:
2(oy, 0rg) . 2_(_0_‘1’ *g) — 3
(01, 0) T (g ) ’

1% level: &y, &y
20d level: ) + &y

3 level: 2 «, | «, is not a root, because:

2(a; + oy, 0‘1_)

=2 —1=r—uy;
(1, xy) 4

but r = 1, so that ¢ = 0.
x; + 2, I8 a root.
4t Jevel: 2 a; + 2 &y = 2(a; -+ «3) is not a root (by V),
oy + 3y is a root
5t level: 2 a; + 3 &, is a root: in fact g{f;_ﬁm =—1l=r—gq
o, &)
and r = 0, so that ¢ = 1

a1+4a2ian0tar00t:2(%{+—3“}2’a2} =3=r—gq
Og, Xy

but r = 3 so that ¢ = 0.
6t level: 3 &y + 3 &y = 3(x; + &,) is not a root
2a, +4ay, =2(x; 4 2n,) is not a root;
8o that we end with 5 level, and the positive roots are
oy Og; Oy + ag; &y + 2ay; oy + gy 20 f Bay.

The corresponding root diagram is reported in fig. 1.
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8.8. Compact groups associated to classical simple Lie algebras:

S R P T

Cartan’s . : =
denomination Compact group @ associated to L I;l;::g::;l:l c;ffﬁ-;-
of ¥
Ay 8U}4y: unitary unimodular complex matrices i+ 2)
et in (I 4+ l)-dim&nsion.?
By O34, real orthogonal gmué in (214 1) di- 214 1)
mensions
y Sp(21):unitary 21-dimensional matrices leaving 1214 1)
invariant a non singular antisymmetric
matrix [':
UTIU =1
(sympletic group)
D, 0,;:  real orthogonal group in 2! dimensions 21 —1)

9. Representations of Semisimple Lie Algebras

9.1. We recall here that by representation of a Lie algebra into a complex linear
space L we mean a linear mapping x — T'(x) where x ¢ ¥, T(x) is a linear
operator in L, satisfying the condition:

T(zy) =T@ Ty — Ty T@).

We will treat here only finite dimensional representations, for which the follo-
wing Weyl’s theorem applies:

I. Any finite-dimensional representation of a semisimple Lie algebra is completely
reducible. Hence we can limit ourselves to irreducible representations.

Chosen a basis {k, ¢,, e_,} in ¥, we will indicate with {H,, E,, E_,} the correspon-
ding operators in any given representation.

IT. Tt is possible to choose among equivalent representation, a particular one in a
Hilbert space, in which: Hf = H; and E}= E_,19).

18) A representation of ¥ gives us a representation of the associated compact real Lie algebra,
which in turn generates a representation of the corresponding compact group. Call it W(g).
From what we said in sect. 3.4 we can always change W (g) by an equivalence transformation
(W(g)— W’(g) = AW (g) A=) 8o to obtain an unitary representation.

Under the same equivalence transformation the operators Fy, F,, @, representing the com-
pact basis (16) go into the operators:

F; = AF;A' etc.
which are antihermitian, so that Il;, E,, E__ transform into operators satysfying:
(HY* = Hf, (BL) = B,
This result is not essential from a mathematical point of view, in that what really matters is

the possibility of diagonalizing the operators H;'s which is assured by the fact that H,’s re-
present a Cartan subalgebra. (Continued on page 334.)



