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l. GeneraI NOtiOBSon Groups [1]
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1.1. A group O ia a set of elements together with a multiplication law which asso-
ciates a third element to any pair of elements of O: (a, b) -+ (ab) = a in 8uch a
way that the following conditions hold: '

i) associativity (ab)a = a(ba) = aba; a, b, a E(1; 1)
ii) there exists an unit element e E O such that for any a E O: ae ~ ea = a;

iii) for any a E O there exists an element a-l, called the inverse of a, such that:

aa-l = a-la = e.

If ab = ba for every pair of elements in O, the group is said to be commutative
or Abelian. .

1.2. A suhset O' is called a subgroup if the set of its elements is by itself a group
under the multiplication law of O. It is easy to see that a subset O' of O is a sub-
group il and only if ab-l EO' for any pair a, b EO'.

i

I

I
l) The symbol € means "belongs to".
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The subgroup G' of G is an invariant 01' normal subgroup if hgh-l E G' for any
h E G and any g E O'.
1.3. A mapping rpof a group Gl into another al is called a homomorphism if:

a-+rp(a), b-+rp(b) implies

ab -+ rp (ab) = tp(a)tp(b).

rpis caIled an onto homomorphism if for any a' E 01 there is an a E 01 such that
tp(a) = a'.
Let e' be the unit element of GI. The set X", of the elements of Gl which are mapped
into e', is caIled the kernel of the homomorphism rp. It is easily shown that X",
is a normal subgroup of Gl.
A one-to-one homomorphism of Gl onto GI is caIled an isomorphism. In this case
X", = {el}I).
1.4. Let G' be a subgroup of G, and a any fixed element of G. The set of all products
ah when h runs over the whole G', is called a right G' coset, indicated in what
foIlows as aG'. If two cosets aG', bG' have one element in common they are in
fact coincident. Therefore the whole group G decomposes into disjoint G' right
cosets. In the S8me way one can define left G' cosets.
When O' is a normal subgroup of G, then for any a E G: aG' = G'a. In fact
the generaI element of aG' has the form:

ah h E G'.

But aha-l = h', h' EG'; hence:

ah = h'a

that is any element of aG' is in G'a and conversely. Let G' be a normal subgroup
of G, and let us indicate with G/G' the set of all distinct G' cosets in G. The set
G/G' equipped with the following multiplication law:

(aG') (bG') = (ab)G' a, b EG

turns out to be a group, caIled the factor group of G with respect to G'. Due to
the {act that G' is a normal subgroup, it is easy to see that the above introduced
multiplication law satisfies 1.1 i-iii. We observe that the unit element of G/G' is
eG'.
Given a homomorphism of a group Gl onto a group GI we can form the factor
group Gl/X", because K", is a normal subgroup of Gl. Observe that:

rp(a) = tp(b)

if and ollly if a and b belong to the same X",coset. In fact let e'I.be the unit element
of GI: the previous condition is equivalent to:

el = rp(a)rp(b)-l = rp(ab-l)

2) By meana of {a,b, c,.. .} we denote the set of the elements a, b, c,...

Group Theory and Unitary Symmetry Models 281

Le. ab-l E K",. Hence there exists h E K" such that:

a = hb

i.e. a EK"b = bK".

Therefore we can define a mapping rp of Gl/K" onto GI ai! foIlows:

rp (aK'I') = rp(b) b EaK"

and this mapping is in fact an isomorphism of Gl/K" onto G..

1.5. Examples

a) Rotation group of the three dimensional euclidean space Ea.
We consider the set Da of transformationa of Ea into itself, preserving distances
and leaving uncha,nged a point O. Given Rl, RI EDa,RlRa is defined as theo
transformation:

Rl RIX = Rl (R2X)

i
I

!
L

which obviously belongs to Da. Furthermore the identity transformation X -+ X
belongs to Da. AIl the Da transformations are one-one so that for any af them
it is possible to define an inverse which of course belongs to Da.By definition this
multiplication mIe is also associative, so tbat it gives a group stmcture to Da.
We choose a set of three orthogonal axes stemming from the fixed point O. Then
to any transformation: -

X-+X'

is associated a three by three real (non singular) matrix {Rit}:

X'i = ~ RitXt
t

satisfying the ortbogonality condition:

RRT = 1 (1)

(RTis the transpose matrix, Rr,.,= Rki)'
For any R EDa tbe correspondence R -+ {Rit} is one-to-onej in terms of the
matrices, tbe product in Da reduces to tbe usual matri:x: produot so tbat Da is
isomorphic to this matri:x:group. In wbat foIlows we will identify them.
It follows from (1) that det R = :!: 1. Tbe subset of tbe R's witb determinant
+ 1, is by itself a group, calIed Ra, and its elements are the proper rotations of Es.
Rs is a normal subgroup of °s, because for any element RE °s, and for any
R' ERs:

det (RR' R-l) = + 1.

The factor group Oa/Rs has only two elementa: tbc coseta el = Rs and el =
= -1. Rs, where1 is the unit matrix. Product mles are:

elel = e.ea = el

elea = elel = e..
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b) SU2.

'l'he set S U2 of two dimensional unitary unimodular (determinant = 1) complex
matrices forms a group with respect to the usual multiplication law for matrices.
'l'he generaI form of a SU 2 matrix is:

U= ( ~ ~); IIXJ2 + IPI2 = 1-p IX

(2)

(the bar denotes complex conjugation).
We can express U in terma of the Pauli matrices:

&"r= G ~) a2 = (~

-i

) a = (
1 O

)O a 0-1

and the unit matrix ao as follows:

(
IXo + iIXa IX2 + iIXr

)
.

U == . . = aolXo + t CIt. a
-IX2 + tIXr IXo - tIXa

(3)

where CIt= (IXr,IX2'IXa) and the real numbers IXi(i = 0,...,3) satisfy:

IX~ + IX~ + IX~+: = 1. (4)

Putting

by (4) we have:

n=- CIt
I(tf

CIt=-,1.n, n2 = 1, ,1. ~O,

IX~+ ,1.2= 1
so that we can set:

o
IXO= cos -2 O ~ O~ 2.n

O
,1.= sin 2

so that:

U
O.. O

= cos 2 - tsm 2 n . a. (5)

We show now that S V2 is homomorphic to the proper rotations group Ra.
For any three dimensional vector X we define the two by two hermitian matrix:

and observe that:
X=X.a

deti' = -IXI2

(6)

For any U E SU 2' we define the transformation a) :

X' = UXU+. (7)

3) If U == {Uid is a square complex matrix, we define:- - -
U: (U)lk = (Uik)

U+: (U+)ik = (UN),
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'l'he following properties are to be noted:

i) X' is a hermitian matrix being U unit!\.ry:
ii) 'l'r X' = 'l'r X = O
it follows then: X' = X' .a because any hermitian two by two matrix is a linear
combination of thePauli matrices with real coefficients;

iii) det X' = det X = -IX' 12= -IXI2.
It follows that the transformation X -+ X' is a mapping of Ea into itself which
preserves the distances and does not change the origino Rence it is a transforma-
t,ion of Da.Let us indicatewith R (U) the element oi Dawhich corresponds to the
matrix U. 'l'hen from (7) we have:

R(Ur U2). X = Ur U2XU2+Ur+ = UrR(Ua). XUr+ = R(Ur)R(U.JX

i.e. U -+ R (U) is a homomerphism oi SU 2into Da.
Observe that from (7) it follows that:

R(U) = R(- U).

Furthermore for any U E S U2 there exists a V € SU 2 such that:

U= V2. (8)

If U is of the form (5), it is sufficient to choose:

V
. O .. O= cos - - .~Bln - n . a.

4 4
'l'hen:

R(U) = R(V) R(V)

detR(U) = (detR(V»2 = (::I::1)2= 1.
hence:

We conclude that U -+ R (U) is a mapping of SU 2 into Ra (the proper part oi
Da).
Substituting expression (5) for U into (7) and carrying out the calculations, it is
possible to derive an explicit expression of X' in terms of X, n, and O:

X' = (X. n) . n + cos O[X - (n. X) n] + sin (J(n X X). (9)

So that X' is obtained from X by a counterclockwise rotation of (Jaround n.
Now let R be the rotation uniquely defined by its rotation axis (with unit vector
n) and rotation angle 0(0 ~ (J < 2.n) in a specified sense, to be definite in the
counterclockwise sense, around n: the previous formula permits us immediately
to find a S U2 matrix U sich that R (U) is the given rotation:

U
(J. . O

=cos2 -t s1ll2n.a.

'l'his provel:! that the homomorphism U -+ R (U) is onto. It is easily shown that
the only matrices U such that

are
R(U) = 1

U =::!: 1

which consequently constitute the kernel of the homomorphism.
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c) S U3.

The set of 3 x 3 complex, unitary unimodular matrices also forms a group with
respect to the usual matrix multiplication Iaw, and this group is caUed S U3.
d) The set of proper Lorentz transformations forms a group indicated as I/;
which is isomorphic to a matrix group: the set of 4 X 4 reaI matrices A such that:
i) ATGA = G

being G the matrix:

ii) det A = 1, A44 ~ 1
(

1 O O O

)
=

.

0 -1 O O
G O O -1 O

O O 0-1

d) Inhomogeneous proper Lorentz group.

Oonsider the set P-:' of the transformations of the Minkowski space

X == (Xl, X2, X3, X4) - X' = (X~, X~, X~, X~)

Xi = E AikXk + ai
J:

(where A € I/;, and a is a four-vector) or simpIy:

defined as:

X' = AX + a.

AppIying a transformation determined by the pair (a, A), and then the trant'
formation (a', A'), we obtain a new eIement of P-:'

(a', .1') (a, A) = (a' + A' a, A' A).

With this multiplication rule P-'; is a group.
It is easy to see that the unit eIement of P-'; is

(O, I)

and that the inverse of (a, A) is

(I = unit eIement of I/;)

The subset (a, A)-l = (- A-la, A-l).

{(O,A)}

is a subgroup of P-:' isomorphic to li;, and the subset

{(a, I)}

is an abelian subgroup, isomorphic to the translations group in four-space. More-
over {(a, I)} is an invariant subgroup.

1.6. Topological and Lie groups

Following our definition a group is an abstract sct in which there is a multiplica-
tion rule satisfying i-iii. We have subsequentJy checked that certain seta of
matrices are groups.

;

i
r
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It is convenient to go somewhat further and introduce in these sets a notion of
nearness of two eIements in such a way that the group operations enjoy a "con-
tinuity" property in a sense to be specified later. (In mathematical Ianguage this
procedure is referred to aS the introduction of a topology in the group).
The reaSons for doing so are that many resulta of the group representai;ion theory,
which are especiaUy imporiant for physics, are based on topoIogical properties.
We will not go over the generai theory of topological groups (which is comprehell-
sively treated in many textbooks; e.g. see refe1'6nce(l»; instead we will concen-
trate on a particular class of groups; those for which it is possible to put a one-
to-one correspondence between their elements and the points of a subset of a
n-dimensional real euclidean space E..
Let G be tbe group under consideration and let tp(O)be its image in E.. li 9 is an
element of G and tp(g)its image, then for any spherical neighborhood S. of tp(g)

I € S" II - tp(g) I < B

consider the intersection of S. with If'(O) (indicated as S. nlf' (a». We detine as
neighborbood of 9 in G the set 1:. of tbe elements whose image points lie in S .n tp (a) .
As e runs over real positive numbers we obtain a family of neighborhoods for
each element of a and with their help one can define the concept of limit and con-
tinuity of functions on the group in the same way as in tbe euclidean space E..
One can also define open sets in G: a set S c a is open il any point of 8 is included
in a neighborhood entirely contained in S. If the group multiplication and the
inversion are continuous witb respect to this topology, we will call a a. topological
group. ..

A continuous correspondence (function) between real numbers x, O~ x ~ 1,
and elements g{x) of a topological group a, is called a continuons path on O. Tbe
group is said to be connectedil for any pair of elements 9 and g' the1'6exists a path
having them as end points.
A path g(x) on a is said to be closed if g{O) = g(l). Two curves I(x) and g{x) are
said to be reconciliable when there exists a function r{x, 1/)(O;£;x, y ::::;:1) oon-
tinuous in both variables, with values in a, such that:

r(x, O)= I{x)

r{x, 1) = g(x).

In particular a cIosed curve g(x) will be reducible to the point I il it is reconciliable
with the constant function:

f(x) = I, I € G, O;£; x ;£;1.

A group G is said to be simply connected il any closed curve g(x) is reducible to a
point.
Letus consideragainthe imageIf'(G)ofa in E.. If tp(O)is a compact (Le.closed
and bounded) set, then a is said to be compact. In tbis case any continuous real
function of the elements of G is bounded (Weierstrass tbeorem)4).

4) It must be observed tho.t the notion of oompo.otneBBof a topologioal group is intrinBio, o.nd
oo.n be given without referring to a po.rtioulo.r po.ro.metrizo.tion of the group, just as the in-
troduotion of a topolbgy in a group (also for thiB topio Be6 [1]).
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Let us consider a rotation R (O,n). From 1.5 (9) it follows tbat the matrix R whicb
corresponds to tbe rotation R (1.5a) bas tbe form

l,a
R'i = (1 - cos8) n,n! + ~ sin (JEikjn" + cos Oliilk

wbere n" are tbe components of n, E'I"is tbe Levi-Civita tensor, and li,; is tbe Kro-
necker tensor. .

This expression is equivalent to
0,001

R = R«(I) = e8n.E= 2:- 61:(n . 1:)1:= e".E" k!

where the 3 X 3 matrices E, are defined aS follows:

(lO)
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We specialize furthermore the concept of a topological group to that of a Lie
gl'oup.
Let us suppose that tbel'e exists in a topological group a neigbborbood N of tbe
unit element e sucb that:
i) tbere is a one-to-one correspondence between elements of N and points of a
subset of E". In addition we now require tbose parameters to be essential, i.e. it is
not possible to express any of tbem in terms of tbe remaining n-l.
ti) il a = a (Xl' .. X,,). b = b (Yl'" y,,) are elements of N sucb that ab and a-l be-
long to N, and (Zl'''Z,,), (Z'l...Z'n) are respectively tbe parametersof ab and a-l.
then (11 )

Z~= Zk(Xl".x,,); i. k = 1 n

0= 1(11

(

O ° O

) (

° ° 1

)El= ° ° -1; E2= ° ° ° ;
° 1 ° -1 ° °

This can be seen using in (11) the relations:

(n.E)2= -1 +In)(nl

(n ' E)a = - (n . E)

(In)(nI)Sj = n,nj; IX = 8n.

It follows then that the coeffieients RSj of R (IX)are nine analytic functions of (I,
and one ean verify tbat tbe Jaeobian matrix

(
OR,,

)a~~ IXI = IX2 = IXS = O

bas characteristic 3. Rence it is possible (see CORNo [2] appendix) in a suitable

neighborhood N of the point (I = (0,0,0), to express IX,as analytic functions of
three fixed coeffieients R, i (say Ru, Rla, R2a):

IX, = IX.(Rtj).

Now consider the product R' . R" = R of two elements of Ra6), and call reapecti-
vely (I,~, 5 the parameters of R', R", R. The coefficients R,! of Rare analytic
functions of (I and~. Rence 5, being an analytic function of three of sucb coef-
ficients, is an analytic function of (I and ~. '
This demonstrates, together witb the fact tbat the parameters of R-l are obviously
analytic functions of those of R, that Ra is a 3-dimensional Lie group.
In an exactly analogous way it is possible, using (5) and tbe properties of Pauli
matrices, to Wl'ite any SU2 matrix as:

E,~G

-1
O
O D.are analytic functions of tbeir arguments.

In tbis case G is said to be a n-dimensional Lie group. (In this connection a func-
tion I(xl'" ,xn)issaidanalytic at the point (al'" .an) iftbere existsaneighbourhood
of this point in which tbe function may be expressed as a converging powel' series
of tbe differences X, - a,). . !
We will choose the parametrization of N in sucb a way that tbe set (O,.. .0) corre-
sponds to e.

(12)

(13)

1.7, Examples

We give bere some examples to illustrate the relevant concepts introduced in the
previous paragraph, as well as to establisb some useful results concerning the
groups which are of interest to us.
Let us begin witb Ra. In sect 1.5 we bave identified any rotation by a unit vector
n and an angle 8(0 ~ O ~ 2n). Tbe drawback of this is that: R(8, n) = R(2n -
- O,-n). We can instead obtain a one-to-one correspondence between rotations
and three-dimensional vectors stemming from the origin of Ea, witb lenght less
than or equal to n: to any rotation of an angle O(O~ O~ n) in tbe counter clock-
wise sense around a unit vector n, we associatethe vector IX = 8 ' n (IIXI ~ n);
conversely given IX,Oand n can be obtained as:

(I

n = Tal (1(11 =1= O).

The end points of these vectors filI a sphere of radius n, and we note that the same
rotation corl'esponds to points on the surface diametricalIy opposite. Rence it is
necessary to identify those points in order to presel've the one-to-one correspon-
dence property.
Since tbe set of parameters is a bounded closed connected snbset of Ea, Ra is a
compact connected group. It is instead not simply connected, as can be seen if one
considers a curve connecting two diametricalIy opposed points on tbe surface of
tbe sphere. Tbese two points correspond to the same element of Ra, so tbat the
curve is effectively closed, but is cannot be reduced to a point.

U = exp (-i : n. o) = exp (-i(l. o)
O

° ~ O~ 2n (I = 2" . n

(14)

6) tlUch that R', R", R EN.
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so that there is a correspondence between the elements of SUa and the points
ol the sphere ol radiu::! n centered at the origin oi Ea, and this correspondence is
one-to-one if one identifies all the points oi the sudace with the elelllent -1 oi
SUs' Due to this fact SU ais not only a compact and connected group, but it is also
simply cOllnected. The same arguments 80Sbefore can be used to show that SUs
is also a 3-dimensional Lie group.
SU 8' We lllay identify any lllatrix oi SU 3 with the real and imaginary part of each
coefficient Uii' obtaining a one-to-one correspondence between the elelllents oi
SUa and the points oi a set oi E18' These parallleters however are not independent,
because t.he matrix must be unitary and unimodular. We obtain 10 conditions at
alI.), so that we have oo1y 8 independent parallleters IXX'It is possible to write any
element oi SUa in a form like (11) and (14):

1.8
iE"'gFg

\ U = e K (15)

where F 1>F 2' . .Fs are eight hermitian traceless independent matrices that are
listed, with their C01lllllutation and anticolllmutation rules in [3].
Formula (15) shows that SUa is a connected, 8-dimensional group and in iact it
may be shoWn that SUa is also simply-connected.
An example oi a non compact Lie group is the proper Lorentz group (1.5d). li we
choose as parameters oi an element oi v:. its matrix coeificients, the subset oi E16
so obtained is not bounded; in iact, in the coefficients oi matrices belonging to the
subgroup oi special Lorentz transformations there appaar expressions like:

1 O~p<l

which of course are not bounded.

2. Linear Spaces

2.1. A set L oi elements x, y, z,... is called a complex (real) linear or vector space
ii:
i) L is a C01lllllutativegroup with respect to a composition law (indicated with the
symbol +) called sum:

x + y = y + x; O+ x = x; x + (-x) = O

li) the product IXX(X ( L, IX= complex (real) number, IXX( L) is defined so that
the iollowing conditions hold:

IX(x + y) = IXX + IXY

IX(PX) = (IXP)X = IXPX

(IX + P)x = IXX + px
1.x =X.

I 8) Nine reai oonditions are the reai and imaginary part ol equations like

EK'UjKUjX = 6'i'

and the tenth is the condition: det (U'j) = + 1.
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2.2. n elemeuts Xk of L are said to be linearly independent ii

~89

n

J; IXkXk = O
K=l

IXk = complex (real) number implies:

IX" = O

otherwise they will be said linearly dependent.
We say that L is n-dimensional if there exist n linearly independent elements,
whereas any n + k vectors are always linearly dependent (k :;;:::1). Any set oi n
linearly independent vectors e, (i = 1, . . . n) is called a basis for L, and we can
express in a unique way any vector x as a linear combination of them:

k=1...n

n

X = J; Xje,.i-l

A transiormation T
x -+ x' = T (x) x (L, x' EL'

of the n-dimensional linear space L into the m-dimensional linear space
called a linear operator if

T(x + y) = T(x) + T(y)

L', is

T(lXx) = IXT(x).

I

I
I,,
!
j.

li

1£ (ed is a basis in L and {e',,}is a basis in L', we have
m " "",

x' = J; x,,ek= T(x) = J; x,T(e,) = J; Xi ~ T"j ei
k=l i=l i-l k-l

80 that

I

n

Xi:= J; T",Xi'i-l

Reuce the coordinates of the transformed vector X' are obtained from those oi X,
by means of a (m X n) matrix T"" that uniquely represents the given transior-
mation in the bases {e.}and {ei}.
1£in a linear space L, far any fixed n, there exist n linearly independent vectorB,
then L is said to be infinite dimensional.
2.3. A subset l of a linear space L, such that any linear combination of elem.ents oi
l belongs to it, is called a subspace (or linear manifold) oi L. L is said to be the
direct sum of thc subspaces '1, ,s, . . . ii it happens that any vector x ol L can be
expressed uniquely 80Sa linear combination ol vectors contained in 11,la. . . We
will write:

L = 11E9 la E9 13 . . .

2.4. A correspondence oi pairs oi vectors oi a compIex linear space L into tbe com.
plex numbers:

x,y -+ (x,y)

I
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satisfying the conditions:

(x,y) is Iinear in x: (iXZ+ pw,y) = iX(Z,y)+ P(w,y)
(x,y) = (y,x)

(x,x) ;S;O, (x,x) = O if and only if x = O
is a scalar product in L.

We observe that in any finite-dimellsional space it is always possible to define a
scalar product (this is not true in generaI for inQnite dimensional spaces: the exi-
stence oi a scalar product must be assumed as an q,dditional hypothesis): in fact if
Xiare the coordinates of x in a fixed basis and Yilare those of Y, we define

l.n

(x,y) = ~ XiYi,
i

and it is easy to see that alI the previous conditions are satisfied.

Any Iinear space in which a scalar product can be defined is called a Hilbert space.
In the infinite dimensional case the additional hypothesis of completeness is required(see [4]).

With the aid of the scalar product it is possible to introduce the cOIlcept of lenghtof a vector x:

l/xII = y(x, x).

If now T is a linear operator which maps L into itself, then we wi1l say that 1'is
bounded if there exists a positive number C such that for any vector x + O:

IITxl1 ::;: c.
l/xII -

To any bounded operator T it is possible to associate another one, which is cali ed
the adjoint, defined as the operator satisfying the foIlowing condition:

(Tx, y) = (x, T+y)

for any x, y, EL

when T = T+, T is calledself adjoint or hetmitian; when T+T= T T+ = 1, Tis said to be unitary.

3. Representation of Groups

3.1. Let G be a group and L a Iinear space. A representation of G in L is by deti-
nition a corre3pondence between elements of G and Iinear operators mapping Linto itfJelf, in such a way that:

T(fh(}2) = T(gl) T(g2)

T (e) = I
gl' g2 E G

(1)
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where I is the identity operator:

Ix=x X E L.

It folIows from (1) that the operator T (g) (g ç G) has an inverse that is T (g-l) ;
in fact:

T(g) T({rl) = T(gg-l) = T(e) = I

T (g-l) T (g)= T(g-lg) = T(e) = I.

The same group can be represented in finite dimenai~!'!J .ljpa.cesas well as in in-
finite dimensional spaces. In the first case we will speak 01 finite dimensional
representation, the dimensionality of the representation being equal to that oi the

,space.
When L is a Hilbert space, we can consider unitary repr~sentations of a, i.e. those
for which T(g) is a unitltry operator.

3.2. Examples

.consider again Rs. We have seen that there is a one-to-one correspondence be-
tween rotation and 3 x3 real orthogonal matrices with determinant equa.! to 1.
Those matrices are operators in a 3-dimensional reallinear space, and obviously
this correspondence fullfills. conditions (1), so that it is a representation oi R,. In
addition this is a one-to-one representation, i. e. a faithful one.
Let now consider the set L2 of the complex valued functions 1p(z) defiued in Es,
.such that

f /tp(X)12dSx

exists. This is a vector space, and also a Hilbert space, with the scalar product
.detined as

(tp, rp) = f tp(;r) ip(;r) dSx.

'The Schrodinger equation for a particle of mass m in a given potential V (x) is

[2~ V2 + (E - v(;rn] 1p(a:)= O
(2)

and for certain classes of potentials (for example Coulomb potential) there exist in
£2 solutions of (2) corresponding to bound states. In this case let us call LB the
subset (c £2) of the sohitions of (2) corresponding to the same eigenvalue E .LE il'
obviously a linear space.
Define for any rotation R E Rs the operator T (R) in L2 as

(T(R)tp)(a:) = tp'(a:)= tp(R-la:).

If V (x) is a centraI potential, i.e.

V (;r) = V (I;rl)

-then T (R) maps LE iuto itself. In fact let 1p(;r) £ LE then

[2k~ V2 + (E - V(OV»] 1p(R-IOV) = [2k~ V'2 + (E - V(a:'»] tp(a:')= O
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where ;r' = R-la: and we have used the fact that

V (a:) = V(a:')
and

01 O O 01
VI =;E OX2=.~ RijRtj ox~ox,' = ~ ox'~ = V'Ik /,; t,t.l . /,; t I

due to orthogonality of Rij.
In addition the correspondence R ~ T (R) satisfies (1)

J

(T(RlRI)V') (a:) = V'(RS-lRl-la:) = (T(RI) V')(RI-la:) = (T(Rl) T(Ra)V') (:I:)

T (RlRa) = T (Rl) T (Ra)Le.

and obviously the identity of Ra is mapped into the unit operator. Hence we have
a representation of Ra in LB, which is furthermore unitary.

3.3. a) Equivalence of representations

Let TI and T a be two representations oI a given group in the spaces LI and La.
Theyare equivalent if there exists a one-to-one linear mapping A oI La onto LI
such that

TI (g) A = A Ta(g).
Ior any g IOG. In this case we will write TI ro.J Ta.
The set of all representations of G decomposes into classes of equivalent represen-
tations, and the fact that two equivalent representations are essentially the
same thing, permits us to limit our study to inequivalent representa tions.
b) Reducible representations.
A subspace l of L is said to be invariant for a representa tion oI G in L, il

T(g)x€l whenx€l ,
for any g IOG. (O and L are always invariant (trivial) subspaees). If a represen-
tation hasno invariantsubspaees other than O and L, itis said to be irreducible.
We observe that il T(g) is a finite dimensional redueible representation oI G
in L, and l is an invariant subspaee, we ean ehoose a basis in L sueh that l is
spanned by the first elements oI the basis, while the remaining ones span a sub-
space l' (L = l EBl').
The matrices eorresponding to the operators T (g) in this basis are of the bloek
form

T(g) = (
T, (g) Q(g»

)O T"(g)

where T, (g) maps l into itself, and T, (g) as well as T" (g) define two representa-
tions of G. In faet:

T( ) - (T,(gl) T, (ga) T, (gl) Q(ga)+ Q(gl) T,.<ga))glga - .
O T" (gl) T,.(ga)

When Q(g) ==O, l and l' are both invariant. In this case we will say that T (g)
decomposes into the direet sum oI T, (g) and T" (g):

(3)

T = T,EB T".
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In generaIwe will say that a representation T' of G in L is deeomposableil it is
possible to write L as the direet sum of invariant subspaces lI' la,... so that

L = II EB l2 Ef> ... = EB l,,
T = T,. EB T,. Ef>... = Ef>T,..,

If in addition any component Tu of T is irreducible, then T is said to be com-
pletely reducible. We must observe that there ara reduciQle representations oI
groups that are not deeomposablè. For example let us consider the set T of
eomplex number whioh is a commutative group under the sum. The 2 X 2 matrices

,.
,f-

T(z) = (~ ~)
Z IOO

eonstitute a representation in the 2-dimensional complex vector space of such a
group. Obviously the subspaee l of vectors like

(~)

is an invariant one. However no other invariant subspace exisÌ4:!because

(~ ~) (:) = ~ (:)
implies ~ = 1, zv = O

whieh are impossibleto be satisfiedfor any z if v =+= o. Henee T (z) is not de-
eomposable.
Furthermore a deeomposable representation is not always completely reducible:
for example the representation

(

1 z O O

)
O 100

z E O Z ~ T(z) = O O 1 z
O O O O

is deeomposable but obviously not completely reducible.
However for unitary finite dimensional representations it is always true that
a redueible representation is completely reducible. ' .

It suffieies to show that if l is an invariant subspace, the orthogonal oomplement
l.Lof l is also invariant. In faet we have:

g ~ T (g)

g-l ~ T (g-l) = (T(g»)-I= (T(g»+

so that if x E " Y IOIl.

I
T (g-l) X €l
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hence:

Le.
0= (T (g-l)x, y) = (x, T(g)y)

T(g)y E 11 when y E 11

for any g E G. We may then write:

L=IEf)ll

T = T, EB T,l..

1£ both T, and T,l are irreducible, the theorem ia proved. Otherwiae there will
be invariant subspaces contained in l and (or) 11' In this case we repeat the above
argùments, decomposing T, and (or) T,l. Being L finite dinlensional the process
must end after a finite number of steps leading to a full reduction of T. A weaker
result holds in the infinite dinlensional case, namely the unitarity of the represen-
tation guarantees only its decomposability.

3.4. Characterization of the representations of compact or finite groups.

Dne important problem ariaing in the application of group theory in quantum
physics is to know all the inequivalent representations of a given topological
group G. Thia problem of the utmost importance from a purely mathematical
point of view, has not been completely solved for an arbitrary topological group.
However in the case of compact groups (and finite groups, i.e. those groups
which contain a finite number of elements) the situation has been completely
clarified by the works of Peter and Weyl, whose results we will summarize.
It is necessary in this connection to restrict our 8:ttention to those representations
T satisfying the following requirements:
i) T ia a continuoU8 representation of G in a Hilbert space H; Le. for any g EG,
from

g' - g g' EG
it follows

IIT(g')x - T(g) x 11- O

for any vector x EH;
ii) if H is infinite dinlensional, T(g) ia a bounded operator (2.4.).
Then the following statements hold:
a) in any clMs of equivalent representations there is a unitary representation
(V.R.);
b) any irreducible representation is finite-dimensional;
c) any V.R. ia completely reducible.
It sufficies then for the groups under consideration to study the finite-dinlen-
,sional irreducible D.R.

4. RcprcscntatioD8of a Compact Lie Group

4.1. In this section we want to show that in the case of Lie groups, the problem
of finding out the irreducible representations is essentially equivalent to that
.of finding finite sets of operators obeying certain commutation rules, or, more
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technically expressed, to find the irreducible representations of the Lie algebra
associated to the group.
We restrict our attention to the finite dinlensional representations due to the
fact ,that we are interested in irreducible oneS.
Let then g - T (g) be a finite dimensional continuous representation of the
compact n-dinlensional Lie group G in a vector spaoe L. li (~l"'" ~,,) ia a
parametrization of a neighbourhood N oi the identity e of G, then we have

T(g) = T(~l"'" ~.) 9 EN.

i
!~

I" = (::)
For example if we represcnt Rs with 3 X 3 real orthogonal matriocs Rjj as scen
before, due to the fact that

R=R(O.n)=R(<<) RERa

T (R) = e".E

with .E" defined as in sect. 1.7, we have

I" = .E".

ti

These operators have the commutation mlcs
s

[1;, li] = I Eij" I".
1:=1

In thc same way, from cq. (14), for thc 2-dimensional representation of SUI we .,
find the generators

(1)

0'"

I" = -i"2

which satiafy commutation rules identical with (1).
4.2. We will now deduce a differential cquation satiafied by the operatore
T(~l"'" ~..), oonnecting them to the I" [6]. Let g and f belong to G; then far
any x EL, we can put

y(g-l) = T(g-l)X. (2).

From 3.1 (1) it follows that

T(fg) y(g-l) = T(fg) T(g-1)X = T(/) x = y(f)
Le.

y(/) = T(/g) y(g-l). (3)

7)Far this we mean that any matrix element Ti; (exl"" ,ex,,)is an analytio funotian af (exl'''' ,ex,,).

22 Zeltschrlft "Fortschrltte der fhyslk". Heft 7
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4.3. Going baok to (7), we must bave, for any solution T (g)

oaT(g) = 08T(rtt 9 ( N
OIX"OIX, OIX,OIX"

(integrability oonditions). For 9 = e, from (8) it follows [6]

[T",I,] = ~O~, lA
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Let us fix now i in N in suob a way tbat /-1 ( N. If 9 is in a suitable neighbour-
hood of j-l, then

9 (N

gi (N

(8)

and we can write eq. (3) as:
(9)

oY(IXI(/), . .IX.(f» - ~ T(lg) OIX,,(fg) ( 1)- ~ Y g- .
OIX, (I) I-I01X/1;(lg) OIX,(f)

(5)

where tbe real numbers O~, (structure consta.nte) depend upon the derivatives
of 8", evaluated in 1X1= IX. = . . . = O, i.e. they ara independentfromthe
particular representation cbosen. By virtue of (9), 01, satisfy

O~,= -Ori

2: (O:, O:i + O~ot + O~°L) = o.
11

Consider now a real vector space 8 of a dimension n equal to tbe dimension of
the Lie group A, and let {l/1;}(k = 1 . . .n) be a basis in 8. With the aid of O~,a
composition rule in 8 can ha defined as follows:

(Ai'A,,)- [li, A,,]= (bydefinition)= 2: O~ilA'
. /1;

X = t:x"l"

(10)

Taking derivatives of (4) witb respect to t~e parameters IX,(/),we obtain:

It is important to note tbat tbe real functions 8,,,= (olX,,(lg)/olX,(f)) depend on
I, g, on tbe group multiplication rule, on tbe parametrization given to N, but
not on tbe representation T (g). Letting 9 - j-l in (5), we obtain tbe equation

OY(lXl" . .IX..)= i' I/1;8/1;,(1X1o'. . ,IX..)y(IXt, ..., IX.)
OIX, /1;-1

(6) (11)

togetber with tbe boundary condition If

y(O,...O)=x
and

or, in an equivalent way
Y = I YiAi

i
x,y (8

we define :
(a<,y) - [x, y] = .1: X/1;Yi[A/1;,Ai] =

i,/1;
oT (1X1' . . IX..)= i: 1/1;8/1;1 (1X1 , . . IX..) T (IXI , . . IX..)

OIX, /1;=1
(7)

= ~ (~ X/1;YiO:i)l,.

Due to (10), tbis multiplication rule bas tbe properties

[x,y]=-[y,x] y,x(8

[x, [y, z)) + [z, [x, y)) + [y, [z, x]] = O(Jacobiidentity)

which are analogous to the usnal properties of tbe commutator of two operators.
The veotor space 8 equipped with tbe composition law just defined is called tbe
Lie algebra A (a) associated to the group a.It sooms that this definition depends
(through Oli) upon tbe particular parametrization of N. However if we make an
analytic change of variables in N (Le. if 9 EN and 9 == (ci~,. . . IX~),t.hen

~ T (O, . . . O) = 1.

We can now demonstrate the following theorem.
li Tdg) and Ta(g) are representations of a connected Lie group a in tbe 8ame
linear space L, and they bave the same infinitesimal generators 1/1;,then for any
9 Ea, Tdg) = Ta(g).
In fact Tdg) and Ta(g) are solutions, in a certain neighbourhood N of the unit
element, of the same differential equation (7), with the 8ame boundary condition,
so tbat, for any element g E N we bave TI (g) = Ta(g). Now in the theory
of topological groups it is shown that any element 9 of a connected group can be
expressed as a product of a finite number of elements gl"" g/t belonging to an
arbitrary neighbourhood of the identity: let now N be auch a neighbourhood.
For any g Ea we have

g = gI ga . . .g" gi EN

lXi = .xi(.xl'. . . IX..)

are invertiblc analytic functions in all thc argumenta), we obtain a set of "new
structure constants O'~i' which are related to O~I through a non singular matrix
ai; in the following way: .

O~~ = I a"QaiIO~I(a-l)Bl
Q,',S

Tdg) = TI (gl) Tl(g.) Tdg/t) = Ta(gl)'" T2(g/t)= T2(g)

which proves the theorem.

29.*
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so that it is possible to find in A (O) a set of n linearly independent vectors
Àj, = L;a"IIÀh such that

A

Let now 9 be an arbitrary element of O; by a result quoted previously, if O is
connected, we can express 9 as a product of elements of N':

9 = gl . . . g" gv g2'. . ., g"E:N' .[À'", À'.] = 2.: G'£i À;'.
A

We see then that to a change of parametrization in N, there corresponds in
A(O) only a change of basis, so that in fact A(O), is uniquely determined by O.
We can at this point introduce independently from the group O the concept
of representation of the Lie algebra A (O). By this we mean a mapping of A (O)
into a set of linear operators defined in a vector space L

It would be tempting at this point to define

T(g) = T(gl)' . . T(g,,),

such that
i) A (,xx + fJy) = ,xA (x) + /lA (y) (linearity)

ii) A ([x, y]) = [A (x), A (y)]

x - A (x)

obtaining in this way a representation of the fuII group in L (it is obvious tbat
this definition satisfies 3.1 (1»).However, if .

9 = gl . . .g"= gl . . . g~, gl,91E:N'
we are not sure that

T(gl) T (g2) .. . T(g,,) = T(gl)' . . T(g~), (14}

where now [A, B] means the commutator of A and B.
We then see that starting from a representation of O

g - T(g)

and in fact there are many cases in which they differ. ,
As an example of this we may consider the group O ol the rotations of Ea around
the z axis. We parametrize this group with the values assumed by i;he rotation
angle 0(- n ~ O~ n).
To the points O= :f: n it corresponds a unique element so that they must be
identified. If g(OI)'g(Oa) are elements ol a neighbourhood N ol the identity, and
g(01).g(02) E:N, th'en

its infinitesimal generators can be thought as a representation ol a basis in A (O),
which extends by linearity to a representation ol A (O). The uselulness ol intro.
ducing A (O) is that the converse is also essentially true, in a way to be explained
below.

Let then {À,,}be a basis in A (O) and let

À"_A,,

[Ai' A,,] = L; Gf"AhIl

g(OI) g(02) = g(OI + (2),

(12)

This gives to O a structure ol Lie group, and in addition O is compact and connec-
ted. This group is one dimensional and so is A(O); hence any opel'ator A on a
linear space L, determines a representation ol A(O).
The simplest example at hand is the representation ol A (O) over the one dimen-
sional complex linear space. Consider the linear opel'ator ik (i.e. the operator
that multiplies by ik, k real number). We take ik aS the representative ol the
generator ol A (O), and equation (13) l'eads

in a finite dimensional representation ol A (O).
G~kare the structure constants associated to O through a given parametrization
ol N. Let us consider the differential equation

OT(,xI,...,,xn) '" .
-- = ~ Su (,xl"'" ,xn)Ah T (,xv ..., ,xn),x" Il (13)

aT(O) = ikT(O)ao

T(O)= 1T (O, . . . O) = 1.

The integrabiIity conditions ol (13), can be expressed in terms ol the SII"(,xl' ... ,xn)
and it can be shown ([1] cap. IX) that they are satisfied in a neighbourhood of
the point (O, . . . O) due to the definition ol Sh" (see eq. (6» and to eq. (12), which
is the lorm that the integrability condition assumes in the point (O, . . . O). Hence
(13) is solvable in a suitable neighbourhood N' of the point (O, . . . O), giving us a
correspondence between the elements 9 E:O, contained in a neighbourhood of
the unit element, and linear operators T (g) in L.
It may be verified, in a rather cumbersome way, that if g,g',gg' E:N', then

T (O) = eik(J

where O belongs to a suitable neighbourhood N of O= O. Let now g(O) be an
element 010. There exists an integer n such that O/n belongs to this neighbour-
hood, and we can define:

T(g(O» = T(g(O/n»)" = eik(J.

T(gg') = T(g) T(g'),

and for this we refer the reader to [61.

However the element iiwhich corresponds to O= :f::7r can be wriUen (with a
suitable n) as

(
n

)
"

(
n

)

"

9 -;; and9 - n
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with g(:n/n) and g(- :n/n) belonging to N; but now we have

T (g (: )f= eij'n =F T(9(- :))" = e-ikn.

Tbe fallure oi this metbod is due to the iact that a is not simply connected. For
simply connected groups instead eq. (14) is iulfiUed (8ee [7]).
In any case given a connected Lie groups A, with a Lie algebra A (a), it is possible
in an essentiaUy unique way, to construct a connected Lie group a, having tbe
same Lie algebra A (G), which ÌBin addition simply connected [1].
From this it iollows tbe eXÌStencein Gand a oi two neigbbourhoodsN and N
oi tbe unit elements wbicb are in a one.to-one bioontiouous correspondence, insuch a way that il

il,f. g.i E N

g,1 E N

tben il ++ g, i H I

gI E N and gi ++ 9 I.

This "Iooal" isomorphism, sioce G is simply connected, can be extended to a

homomorphism rpoi Gonto a ([1] cap. VIII). ais caUedthe universal coveringgroup oi O.

When a is simply oonnected this bomomorphism reduces to an isomorphism,
i.e. a and G are essentially tbe same group.

At this point it should be clear that from a representation oi tbe Lie algebra
A (a) oi a connected Lie group a, we can construct a representation of the uni-
versaI covering group oi G. Let us see how to sort out irom the representations
of a,representationsoiO. -
If g- T (il) is a representation oi a WeconBiderthe set oi thoBeoperators which
correspond to tbe kemel K" oi the homomorphism (see 1.3) a-a. li tbis

set reduoes. to tbe identity operator, then T (g) = T (f> when g and 1 belong
to the same K" coset, Le. tbe function T (g)is constant over each K" coset. Hence
to anyelement gK" oi G/K" it corresponds a linear operator

T(gK,,) = T(fJ)

in a way tbat preserves the associativity oi the multiplication law in a/K". This
correspondence is then a representation oi G/K" in L and also, being G/K'I'mo.morphic to a, a representation oi a in L.
Summarizing Wecan say that:

i) il a m simply connected, a representation oi A (a) in L determines uniquelya representation oi a;

li) il a m not simply connected, a repreBentation oi A (a) in L determines a repre-
sentation oi Gwhich reduces to a representation oi a il and only il the kernel
K" oi the homomorphism a- a is mapped into the identity operator. To
exemplify let us consider again the case oi Ra and SUa. We have Seen that the

GroupTheoryand Unitary SymmetryModeIs 301

infinitesimal generators oi 8 Ua verify tbe same commutation rules as the genera-
tors oi Ra, Le. they have the same Lie algebra.
In addition 8 (Ja is simply oonneoted, so that 8 Ua is the covering group 01 Ra.
In the seotion 1.5b, tbe homomorphism 018 U" onto Ba has been proved, together
with the iact that the kemel K" is the set 01 the two matrioes :1: 1. We will see
later that any irreducible representation oi A (8 U). is uniquely dete~ by an
integer or half integer non negative number i, in suoh a way that its dimension
is 2i + 1. When i is an integer the elemente :1: 1 &re mapped into unity, so
that these representations are in fact representations 01 Ba.
4.4. Quite independently from Lie groups,Iwe can define a real, n-dimensional
Lie algebra as a set :t of elements suoh that: .
i) :t is a real -n-dimensionallinear spa.ce; .

li) there eXÌ8tsin:t a composition law indicated as x, 1/-+ [x, 1/] linear in x and 1/.
antisymmetrio, satisiying Jacobi's identity (sce seot. 4.3.).
As beiore we define a representation 01 :t in ~ linear spaoe L to be a mapping
x - A (x) oi the elements oi :t into linear operatore of L satisfying conditions:

a) A(~x + P1/) = ~A(x) + PA(y);

b) A ([x, V]) = commutator oi A (x) and A (y) = [A (x), A (1/)]. .
Oi particular importance is the so.called regular representation of :f. In this
representation :t plays a double role in that it is the linear spa.ce in which the
representation is oontruoted and at the same time it supplies the elemtmtto be
represented

XE:t

x - ad(x)
where ad(x) is the linear mapping of :t into itself (qua vector spaoe) defined as

ad (x)y = [x,1/].
Furthermore

ad (~x + pz) = ~ ad (x) + Pad(z)

[ad (x), ad (z)] = ad ([x, z])

by virtue of Jacobi identity.Hence the oorrespondenoe

x - ad(x)
is in fact a representation oi :t.
An invariant subspace for the regular representation is called an ideaI JI:

YEJ

ad (x)y = [x, y] EJ for ~ny x E.9'.

In particular J is abelian when x EJ Y EJ implies [x,1/] = O.
Presence or absence of ideals has extremely important consequenceli for the
structure oi the Lie algebra itself and Lie algebras are divided in three olasses
accordingly:

if
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i) simple Lie algebra: no ideals other than :t and zero; .

ii) aemisimple Lie algebras: no abelian ideala other than zero;
iii) alI the other Lie algebraa.

Whereaa for the firat two classes there is a complete mathematical theory, the
third one ia not as weli aasessed till now.
A aubalgebra of :t ia a linear subspace l such that

x, Y E l

implies
[x, y] E l;

if in addition for any x, Y E l

[x,y] = °,

we say l to be an abelian subalgebra.
FinaHy we mention that for any Lie algebra :t there exists always a connected,
simply connectedLie group G,such that

A(G) = :t.

Rance it ia equivalent to speak of Lie algebras or of connected simply connected
Lie groups. Groups related to simple (semiaimple) Lie algebras, are caHed in
turn simple (semiaimple). In addition the correspondence between Lie groups
and Lie algebras is such that:

there is in G there is in :t'

subgroup ++ aubalgebra

abelian subgroup ++ abelian subalgebra

invariant subgroup -- ideaI

abelian invariant subgroup -- abelian ideaI

We introduce another uaeful concept: a subalgebra <cis called a Cartansubalgebra,
if it has the properties : .

a) CCia a maximal abelian subalgebra, i.e. there exists no other abelian subalgebra
containing CC; ,
b) if h E CC, then in any representation of <c over a complex linear space, A (h)
is a diagonalizable operator.
For semisimple Lie algebras associated to compact Lie groupS, i.e. those algebras
we will uSe later in phyaical applications, one can show that any :t' = O admits
non zero Cartan subalgebras and that all Cartan subalgebras of :t' have the same
dimensionality. The common dimensionality is called the rank of 1'.
Finally we make a remark concerning the characterization of the connected

Lie groups admitting the same Lie algebra 1'. The simply connected group G
uniquely identifiedby :t must be of courSethe coveringgroup of aHthem. Rence
for each of them there is a particular homomorphism G-+ G, so that G is iso-- ~

morphic to the group G/Kq>'The essential feature of Kq>are: -
a) Kq>is a centraI subgroup, i.e. its elemcnts commute with aH elements of G;

b) K'I' is a discrete subgroup, i.e. Kq>is made up with iaolated elements (in G). In
particular if G is compact, K", has a finite number of elements.
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Rence given G,one haa to identify ali ita centraI discrete subgroupa. which ia a
relatively simple task. Then by making the correaponding quotient groupa, one
find alI the required groupa. . .

For example aee the case of Rs and S Uf.' ::I: 1 ia the only discrete centraI aub-
group of SU2, so that Rs ia the only non aimply connected greup having the
same Lie algebra as 'S U2'. .

5. KroueckerProdlWtof ~tatioQII

5.1. Let L and L' be two linear apaces, respectiv~ly'ofdimensions n and n'.
Consider the aet L @ L' of alI formallJ1uns8) \ L: ..,

Ix) = ~ C...m'Im) 1m')
mm'

m = l...n
m'= l...n'

where 1m)and 1m') are baaeain L and L' and c,."j"1U'e.y.I"bitrarycomplex ll1unbers.
Defining linear combinations of elements x, Y EL @ L' aa

/XIx)+ PIY)= ~ (o.:cm...' + ph",.,) 1m)1m')
m,m'

(bmm,are the coefficienta pertaining to y). .
L (8)L' acquires a atructure of linear apace (of n .n' dimenaions) a.nd will be
caHed the tenaor or Kronecker product of L timea L'.
In L (8)L' a acalar product can be defined aS

(x, y) = ~ Cm.' b",m"
m,m'

If now g ~ T (g) and Iu ~ T' (g) are two representations of the aame group G
in L and L', a new representation of G in L (8)L' (indioated aa T 0 T') can
be defined as follows: '

g ~ T(g) @ T'(g)
where

(T(g) @ T'(g» 1m)1m') = ~T""(g)T'",,,'(g) Is) Is'),,'

and for an arbitrary vector Ix) :

(T (g) @ T'(g») Ix) = ~c",.,(T(g) @ T'(g» 1m)1m') =mm'

= ~ (I Cm.' Tm. (g) T'""" (g») Is) Is').
,,' mm'

Hence we see that each element x of L @ L' ia uniquely determined by a aet
of n. n' complex numbers Dm.', and under the representation T <8>T' these
components transform as

D:',m' = ~ TemT'"., Dee'.
ee'

B)Where it is convenient we use for vectors the Dirac notation: 1m) for e. (seet. 2.2).
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It is easy to see that T (8)T' is unitary when T and T' are; but even in the
case that T and l" are irreducible, T (8)T' is not so. Rowever, according to the
generai statements in section (3.4b-c) being T (8)T' unitary, it will be fulIy
reducible: the space L (8)L' can be written as a direct sum of invariant sub-
spaces li,1Iwhich transform according to irreducible representations Ti.ll (g)9):

L (8)L' = EBli..
i...

T (8)T' = EBTi..
i.",

i = 1.. .K.

Let us choose in each li... an orthonormal basis of vectors indicated as

Ir;i,IX)

where the index r labels the basis vectors of li..' Collecting alI these vectors we
obtain an orthonormal basis in L (8)L; hence there exists a.unitary matrix

C(m, m'; r,i,IX)

connecting this basis to that previously introduced

1m)1m')= 2:C(m, m'; r, i, IX) Ir; i.IX)
r,i...

Ir; i,IX) = 2: O(m, m'; r, i, IX)1m) 1m').
,"m'

The quantities C(m, m'; r, i, IX) are called ((Iebsch-Gordan coefficients of the
group G.
We observe that due the fact that li'" and liP transform according to equivalent
representations (sect. 3.3a), their elements can be put in a linear one-to-one
correspondence, so that we can choose vectors Ir, iIX), 18,i~) in such a way
that indices r and 8 run over the same range. In addition these vectors can be
choosen so to satisfy:

(ilXT'IT(g)lilXT) = (ilXT'ITi..(g)lilXT) = (ifJr'ITiP(g)lifJr) = (ifJr'IT(g)lifJr).

We will always refer to a basis selected in this way whenever we will have to
deal with reducible representations of a group G, calling it the standard basis.

6. Schur's Lemma and Wigner-Eckart Theorem

6.1. Schur's lemma

i) Let TI (g) and Ta (g) be two irreducible, inequivalent, finite dimensional represen-
tations of a group G in the Iinear spaces LI and L2.

il) In generaI there will be several irreducible subspaces transforming according the same irre-
ducible representation. These subspaces are distinguished by the additionallabellX, whereas i
distinguishes between group of subspaces transforming according inequivalent representations.

I

I

Group Theory and Unita.ry Symmetry Models

Any linear operator A mapping LI into La. 8uch that

Ta(g) A = A Tdg) for any y E G
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is the nulI operator.
Proof: Let NA be the set of vectors in LI such that

Ax=O xENA.

NA is an invariant subspace for TI(g). In fact if X E NA, then

A Tdg) x = T.(g)Ax = O
i.e.

Tdg)x ENA for any 9 E G.

Then N A = LI or N A = O. In the first case the theorem is proved. In the
second case let us calI HA the image of LI into LI, RA is invariant for TI(g):

y E HA

y=Ax

Ta(g)y = Ta(g)Ax = ATI(g)x

ie.

ie. Ta(g)y E HA when Y ERA,

Rence HA = O or RA = La. The second case is excluded being TI and TI
inequivalent, which proves the theorem.
This theorem can be extended to infinite dimensional representations, provided
A isa bounded operator.
ii) li TI and Ta(g) are irreducible, equivalent, finite dimensional representations
of Gin the complex vector spaces LI and La, Le. there exist8 a one-to-one mapping
U of LI into La such that TaU = UT1, then any linear operator A mapping ~
into La and satisfyhig

TI A = ATI

is a multiple of U: A = ,lU.
Proof:From

Ta(g)A = A Tdg) and

U-lTa(g) U = TI (g) it folIows

Ta(g)A = A U-l Ta(g)U
i.e.

Ta(g)A U-I = A U-lTa(g)

so that the theorem is proved if we show that any operator A' which commuter-
with alI the operatore of an irreducible representation of G is a multiple of the unit
element (in fact if this is true we have A U-l = AI i.e. A = ,l U).
Any operator A' has at least an eigenvector x =1= O belonging to some eigen-
value il:

A'x = ilx.
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Let V be the linear manifold spanned by the vectors belonging to this eigenvaJue
(V =FO). V is invariant undel' T 2(g)in fact:

XEV

implies

i.e.
A'T2(g)x = T2(g)A'x = ÀT2(g)x

T2(g)x E V.

But V =F°, and T2is irreducible.Henceit follows V = L2' Le.

A' =).1.

As before, the theorem is true for any bounded operator A I commuting with thc
operatore T (g) of an unitary irreducible representation of G in any Hilbert space.
6.2. We use the results of sect. 6.1 to determine the structure of an operator T,
which is invariant under an arbitrary unitary representation of a group G.
In particular we will determine the form of its matrix elements, with respect
to a fixed basis.
To be definite let g - U (g) be an unitary representation of G in a Hilbert
space 3e. We require it to be completely reducible, which ÌS always the case
when G is compact or finite. Let T be an operator mapping:Je into itself such that:

TV(g) = U(g)T for any g E G. (1)

:Je can be decomposed (sect. 5.1) into a direct sum of invariant irreducible sub-
spaces :

:Je = EB(EB '.",) = EB l.", ."'. i",' (2)

For aqy vector tP.", E l."" we have

U (g) tPi", E '.",

so that we may define an operator Vi« (g) mapping lio into itself as

V(i«) (g) tPio = U (g) tPi",.

V(io)(g), called the restriction of U (g) to lio, by hypothesis constitute an irreducible
representation of G specified by the labels io<

(U(i«) (g) "-' U(iP) (g»).

Consider now the vector TtPio (tP.o Elio)' By (2) we can uniquely write

T rJ>io= 2:"PiP ("PiP E liP)
iP

and define the operators 'l':jp~,mapping lio into I,P as

(3»

Tlio)m- - 11J . Tm- - ~ TU",) m-

(iP) 'Vio - Ti{J, 'Vio -.;:., Ij{J) 'Vio'
iP

(4)

',.
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We use now (1), which gives:

U T tPi" = 1,; "PU iP = :2: UUP)"PiP = :2: V<iP)Tap: tP,o = '5: "PljJ=
1jJ ijJ ijJ 11

= T VtPi" = T VIi,,) tP,o = :2: T:}p: V<,,,)tP'a = '5: 'i'~p.ijJ 11
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By definition of direct SUID,we then obtain:

1pljJ = 1p16 .,
Le.

V(iP) TI}p! = Tapl V(ia).
(5)

Va",),VlijJ)are irreducible representations of G on lia and lijJ, so tha.t we can apply
Schur's lemma to the operator T:}pl concluding that:

a) Tap~ == O when i=Fj
b) T:ip~ = À(io<P) Vjp where À(io<{J) depends upon i,~, {J and Vip is a, fixed
operator mapping 1'0into liP'such that

VijJ Vi", - Vi", Vi",

i(J - ijJ .

(6)

r

l

Inparticular, choosing inside each li", a standard basÌS {(I>~"'}as in aect. 5.1, the
operator defined as

Vi'" (l>i'"= tPiP .
I{J' r

sa tisfies (6).

Inconclusion, using a), b), (3) we Bee that:

(tP~P,TtP~"')= À(i, IX{J)tJiitJr..
(7)

6.3 Wigner-Eckart theorem

This theorem, which is valid for any compact group, can be seen as a generali-
zation of the preceeding statements on matrix elements of invariant operatore.
Let g - V (g) be an unitary representation of G into the Hilbert space 3e. Suppose
we have a finite number of operators TIi:such that

I

I

V(g) TIi:V(g-l) = {Di(g»Ii:'Ii:TIi:'

where Di (g) is a matrix of the irreducible representation of G labeled by j. Ope-
rators of this kind are calied irreducible tensor operators transforming aS the
representation j.

Consider now a decomposition of:Je into irreducible subspaces li""and a standard
basis {tP~"'}.
Wigner-Eckart theorem states:
Given a set of irreducible operators Tt transforming aS the representation of G
specified by l, then:

i) the matrix element:
(Tl(l>~"', 4>i!)

(8)
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vanishes whenever the representation j is not contained in the Kronecker product
of the repreaentationa l and i.
li) when the repreaentation j is contained in this tensor product, then:

(Ti tj)~"',~/I) = I O(i r, lk; i81') (ilXIITZUiP»'
y

(9)

where O(ir, lk; i81') are Clebach-Gordan coefficients which project the vector
tj)~tj)Lof the tenaor product of the repreaentationa i and l into the vector ~)'
transforming as thc yth irrducible component equivalent to tbe representation j.
(ilXIIT'IIiP>)' is a symbolic way of writing a numbcr which depends no more
upon tbc "magnetic" quantum numbers k, r, 8, and ia called a reduced matrix
element oi n. In this way the dependence oi (8) upon the magnetic quantum
numbers is lumped into Clebsch-Gordan coeificienta, i.e. is the same for any set
oi irreducible operators transforming in a fixed way, and here is the main
importance of the theorem.
Tbe number of terms appearing in (9) is simply the number oi times the repre-
sentation i appears in tbe tenaor product of representations i and l.
6.4. We want to visualize the important resnlts obtained in last two sections
witb a simple example.
Let us consider a representation oi S V2which is the direct sum oi two irreducible
representations of i = 1,1/2.
In this case:

H = Il EJ11'I, (no need for any index like lX)

V(g) = Vl(g) EJ1 V'/'(g).

A atandard basis is one in which the third genera~or of S V 2 is diagonal: vectors
of thie. ba8Ìs will be indicated as

li, mi) i = 1,1/2

{

+ 1, O, - 1 i = 1
mi = l / _l / . - l/2' 2 J - 2'

Consider a set of two operators T'f' (i = ::I:1/2) tranaforming aa the i = 1/2
representation, Le.

V (g) T'f' V (g)-I = I (V'I, (g),,;T~'," g € S V2.

Let us find the structure 01 matrix clements 01 T'f', uaing Wigner-Eckart theorem.
From (35) we have

0' ,
Il ''1, I . .) - Oj'loi' ' (

' "

), mi' i J, 1n, - mlim'!' Il J, J .

The decomposition of tenaor products involved here is ae Iollows:

V'I, @ V'I, = VI EBVO

VI @ V'i, = V'I, EBV'I,.
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Rence when j = 1 the matrix elementa vanish unless i' = l/. and viBeversa..
Non vanishing matrix elements are: .

(l m' IT,'ll/.m) = O:::;'.:.~1(1, l/.)

(1/.m' IT~/'llm) = O:':i:':,l(l/., 1).

Using Clebsch-Gordan coefficients oi CONDONand SUOBTLEYwe find the following
struoture :

g

f

o _..!!- O
%

O O -vi,a O O
1 O -1 l/I _1/2..-....-

1/2

O O

m:

j: 1

m j
t

\ \

1

O 1 1 O

-t -1

1/2

\

11/.

_l/. l/. 1- l/.

T~\,.
O O O O

O O ~ O
Y2

O O O O

vi,a O O O O
,a

O %0 O
1 O -1 l/. - il.

~_.~

1 l/.

O

O

l

O

(we set l(11/2) = l, l {l/.,1)= ,a).
Finally we conaiderthe case of an invariant operator, Le. an operator T such
tb~: .

V(g) T V (g-I) = T.

In this caae, using formulaa of aeet. 6.2, we find tbe following atructure:

7. Symmetry Principle~ in Elementary Partieles Physics

7.1. In the development oi Quantum Phy8Ìcs increaaing attention has been given,
at various stages, to invariance principJes. Particularly, in tbe phyaics of elemen-
tary particlea the syatematic inquiry and exploitation of tbe so oalled internaI

T".'I.
O O O l O

O O O O
y2

O O O O O

1 {

).1 O O
O II O I O

-t O O ).1

1/ {l/.
O

I ).'1. O. _l/. O ).'/.

t O -t l/I _1/.'----'
1 1/2
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zable situation. Rence :Jebreaks up into subspaces called coherent sectors such
that the superposition principle holds only within each coherent sector.
Such phenomenon is the manifestation of the so-ca11edsuperselection rules [9, 10].
Consider now a system prepared in a certain state 'P. If g is an element of the
proper inhomogeneotlB Lorentz group P;;' we can apply this transformation to
the instruments with which we have prepared 'P, obtaining a new physical situa-
tion of the same system, described by a ray 'PfI.As stated by Wigner, the theory
is relativistically invariant if the fo11owingrequirements are satisfied.
i) The mapping P - pfl is one-to-one, and maps each coherant secror into
a coherent sector;
li) if 'l' - tpfl, lP_lPfI, then:

I (V', tp) I = I (~, q)/) I

symmetries led, in the last few years, to remarkable successes in contrast to the
unsatisfactory statua of dynamical calculations. It appears that, due to peculiar
features of the quantum mechanical description, the theory of group represen-
tations provides the natural device to handle such invariance principles.
Physical laws express correlations among observable events. The latter of course
take pIace in space and time so that to specify any of them we need certain
coordinates with respect to a fixed space-time frame of reference. In addition we
need some other "internai parameters" (such as charge, baryonic number etc.)
whicb uniquely determine tbe nature of the objects under consideration.
Physical law8 are then lunctional relations among sets 01 such "coordinates".
Loosely speaking a symmetry is a transformation on the coordinates which
leaves invariant these relations.
There are invariance principles which we believe to be valid for any kind of
phenomena, and these are: invariance under translations in space and time and
spatia! rotations. As stressed by WIGNER [8], the mere possibility of comparing
results of experiments made in different places and at different times (i.e. the
reproducibility of phenomena) is based on this assumption.
At the same level of universality we accept the assumption that the physical
laws ara the same in 11.11frame!:! of reference differing for an uniform rectilinear
motion. All this is summarized in the statement that Physics is invariant under
inhomogeneous proper Lorentz transformations.
There ara many other symmetries in elementary particle physics which are shared
only by certain kinds of processes (as for example is the case for the SU2 or iso-
topic spin symmetry which is valid only for strong interactions). We postpone
the study of these topics to a brief sketch of Wigner's analysis of relativistic
invariance in quantum mechanics.
7.2. In the formalism of quantum mechanics, there is a normalized vector V' in
a Hilbert space :Je, corresponding to any physical situation we can set up in
laboratory. The normalization condition determirtes V' only up to a phase factor,
so that what is really relevant is a set 'l' of vectors different from one another
by phase factors. tpis called a unit in:Je. There is in addition a self-adjoint opera-
tor A corresponding to any observable quantity a and the connection between
theory amI experiments is contained in the statement that the average value
of a in the situation 'l' is

where V"tp, ~, tpuare vectors belonging to 'l', lP, pfI, l.PfI;

ili) (tpU)u'= tp(ug') and
when g' - g tpg'- tpfl.

The existence of tpufor any 'l' and g is equivalent to what is ca11edthe homogeneity
of Minkowski space-time, and combined with i) makes tlBsure that 11.11physical
operations possible in a given frame, are pOS8ibiein any other frame connected
to it by a Lorentz transformation. Condition li) te11s tlB that the conneotions
between any two states depend only upon their relative motion or position.
Finally ili) merely expressed the fact that P;;' is a group and tha.t two slightly
different transformations must produoe nearly the Same effect. From i) and ili)
it follows that 'P and tJlubelong to the same coherent sector.
From i)-li) it ca.n be shown [11, 12] that there is a unitary operator U (g) corres-
ponding to each g Ep;;., snch that

U (g) V' E pu when V'E 'P.

1(11',tp)12

U (g)is defined up to a factor of modulus one, in that the substitntion U (g) - U'(g)
= CI) (g) U (g) ( ICI) (g)I = 1) gives us another set of admissible operatore.
However there exist a neighborhood N of the unit element in P;;' and a particular
cboice of these phase factors such that

a) g EN, g - U(g) is a continuous mapping;
b) g,g', g' g' EN implies g. g'- U(gg') = U(g) U(g') ,
so that we have a local representation of P;;' in:Jç. Being P;;' not simply connected

this loeal representation extends to a representation of the covering group PJ: .
Its infinitesimal generators, multiplied by - i, ara ten sel£ adjoint operatore P,.
and M,.. = -M,.. (fJ, 11= 0,1, 2, 3), P,. being identified with the total momen-
tum (so that Po is the total hamiltonian), whereas

Ji = 1.: e'hk Mhlt, h,le = 1,2,3
h,l:

are the total angular momentum operators of the system. P,. and M,... are a
representation of theLie algebra of P;;'. 'l'heir commutation relations are listed
in [9]. In particular

[P p' Po] = [Ji, Po] = O

m'l'(a) = (A V'. V')

where V' is an arbitrary vector of the ray 'l'. As it is well known, any physical
quantity can be written in terms of expressions like:

and these depend only upon the rays P, lP to which 11',tp belong.
It is an experimental fact that physically realizable states always correspond
to definite values of eharge, baryonic number (N) and leptonic number (l). This
has the consequence that a vector in :Je which is a superposition of two states
with different eigenvalues of Q or N or l cannot correspond to a physica!ly reali-

23 ZeltBcbrlft "FortBcbrltte der P~Y8Ik". Ben 7
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so that momentum alld angular momentum conservatioll Iollows Irom Lorentz
illvariance.

From previous considerations we have seen that the only possible relativistically
invariant descriptions oI a quantum system are given in terms oI unitary represen-

tation oI P;;' in the Hilbert space oI state vectors. When these representations are
irreducible we speak oI elementary system. In this case any state call be reached
from a fixed one by means oI a Lorentz transIormation, and there is no way to
divide the Hilbert space into subsets transIorming independently under p;: .

The study of the irreducible unitary representations oI PJ; has been carried out
by WIGNER [12] and the results are as follows: each irreducible representation
is characterized by two numbers m and s. m2 is the eigenvalue oI 1:p/JPp in the

p
representation l°) and is, according to our previous identification oI Pp with the
total momentum, the mass squared oI the particle. Hence the ollly cases oI inte-
rest Ior physics are the irreducible representations with m2 > O or m2 = O.
In the first caSe s il'!.tn integer or half integer non negative number, and is equal
to the spin oI the particle. In the second case s = O, ::!:: 1/2' ::!:: 1, . .. and is the
component of the particle spin along the direction oI motion (helicity).
A very detailed analysis of Lorentz gl'OUp representations as well as their .appli-
cation to scattering processes can be found in [13].
We conclude emphasizing that from the previous considerations we have extrac-
ted a very precise definition oI elementary particle in a quantum theory, at least
as far aS its space-time behaviour is concerned: it is a system whose states trans-
form like an irreducible representation oI P;;', and it is thus uniquely determined
by its mass and spin.
7.3. Apart from space-time symmetries, some kind of interactions between par-
ticles exhibit peculiar invariance properties: in particular we will focus our atten-
tion on symmetries of strong interactions. ,

Should we know the actual dynamical structure of strong interactions then it
would be possible to check directly what are the transIormation on internai
labels which leave such dynamics invariant (in thc sense of sect. 7.1).
Let us see in a particular model (field theory) what type oI conclusions can be
drawn from the existence of a Lie gl'OUp of such transIormations.
This will be a guide for us in the actual situation where we do not know the dy-
namics involved, in order to be able to guess, from certain experimental obser-
vations, the existence of strong interactions symmetries.
Suppose that strongly interacting particles are described by certain fields 'P~(x)
and by a Lagrangian l' ('P~,op'PJ.
Moreover suppose that there exists a certain n-dimensional Lie group G of trans-
formations on the fields

'P~(x) ~ 'P~(x) = V 'P~(x) V-l = 1:t~/i'PjJ(x)
p

(1)

which leave l' invariant (here the labels lX,flrefer only to internaI degrees of
freedom such as charge, baryonic number, hypercharge etc. whcreas space-time
labels are neglected).

l°) Due to the fact that E P/J p/J commutes with ali the infinitesimal generators, in any irre-
/J

ducible representation is must be a multiple of the unit operator.
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Such transformations are induced on the fields by unitary operators V (17)(g E G)
which are a representation of a in the Hilbert space of the stl'Ongly interacting
particles. The infinitesimal generators multiplied by -i are n selfadjoin"t opera-
tors Qt. Their expression in terms of the fields can be found by requiring "that the
infinitesimal transformations leave unchanged the Lagrangian. In fact Qne can
construct in terms of the fields n divergence-free currents

J~(x) le = 1,. . . n

o/JJ~(x) = O (2)

such that the operators

JJ~(x) d3X

satisIy the commutation relations characterizing the Lie algebra of G, and are just
the infinitesimal generators of the transformation (1). From (2) it follows that
such operators are constant oI motion (this result is just the quantum counter-
part of the classical Noether's theorem [14]).
Consider now one particle states. They /tre obtained by applying to the vacuum
state a creation operator a~ (again space-time labels are omitted) which obviously
satisfies

Va+ V-l = 1:t~/iap
" {J

so that

i

li

V (a~ I O» = L:t~fJ(a-; I O»
p

Le. one particle states transform like a representation of a. Moreover, since the
Qt'S are constant operators, the, Hamiltonian which is the time displa.cements
generator, commutes with them, being therefore an invariant operator under a;
the same applies to the masS operator. li a is compact, then the representation
of G aver one particle states is completely reducible and the irreducible compo-
nents correspond to states of particles with the same, masso
We can simultaneously diagonalize a number of Q" equal to the rank of a, then
we find multiplets of particles with equal maBSeS,distinguished (apa.rt from
possible degeneraciesll) by the eigenvalues of the diagonal Q,,'s, i.e. by certain
"internaI" quantum numbers.
Passing to multiparticle states we observe that they transform under a as folloW8

V(at~a2fJ...1 O» = Val~ V-l Va2/i V-I...I O)=

= L: t~." tflfl". . . (ai." a2fJ". . . I O»
.',p'

(1,2. . . take into account space time as well as other clegrees of freedom which
are uneffected by a) Le. as tensor product of one particle representations.
Suppose

I qt, 1); I q~, 2); . . .

to be ane particle stat;es which are eigenstates of Q/rwith eigenvalues q~. q~, . . .
Then, uncler the unitary transformation U = (1 + ieQ/r), the multiparticle

11) This happens e.g. in the case of S Us'

23*
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state

Iql, 1) Iq~, 2) . . . (4)

transforms as

(1 + ieQI;) Iqt, 1) I q~, 2) ... = (1 + ieQI;)Iqt, 1) (1 + ieQj;) Iq~,2)... =

= Iqf, 1) Iq~,2)... + ie{qf + q~ + ...) Iqf, 1) Iq~,2)... + O (e2)

.and we conclude that the state (4) is an eigenstate of QI;with eigenvalue q~ + q~ +
+ ''', i.e. the QI;'S are additive conserved quantities.
In conclusion: starting from invariance under an n-dimensional Lie group G, we
.havefound:
a) n additive conserved quantities (in generaI not all simultaneously diagonali-
zable);
b) a multiplet structure for the one partic1e states;
c) consider furthermore the scattering of two particles into an arbitrary multi-
particle state. Thecorresponding amplitudes are given by the matrix elements
of the S-operator which, being a function of the Lagrangian .:t, turns out to be
an invariant operator under G, as .:t is. We already saw in sect. 6.2 the generaI
structure of matrix elements of such an operator between states belonging to
arbitrary representations of the group G. That analysis tells us that symmetry
under G severely restricts the form of the S-matrix, leading to relations between
amplitudes of a-priori uncorrelated processes.
At this point one remark is in order. It may well be (and this is the case for
isotopic spin or S U2 symmetry) that not all the QI;'S commute with charge, or
with some among the other observables which define a superselection rule. When
this is the case these QI;'Sdo not ha ve a complete set of observable states and their
conservation cannot be directly observed. If the syrnmetry has to be useful, at
least a number equal to the rank of G among the QI;'Shas to sommute with each
observable defining a super selction rule (as well as among themselves), in order
to use their common eigenvalues as labels for physical states. Point a) is then
reduced to the existence of at least r additive mutually commuting conserved

quantities (r = rank of G).
A simple example of an invariance principle which can be treated in this way
is the so called first kind gauge invariance.
Suppose the following transformations to leave unchanged the Lagrangian: for
any Hermitian field p: p ~ p
for any non Hermitian field 1p corresponding to + 1 charged particles: "I) ~ t;i"'Ij!

for the adjoint field "ip: "ip~ e-ia"ip (~real).

They constitute a one-dimensional Abelian Lie groupI2).

12) This group callcd U1 has as elements the complex number eia (exmod 2 n), with the multi-
plication law:

éaeiP = é (a + P).

As for any Abelian group, its irreducible representations are one dimensional: in fact let
cia -7 U (ex)be an irreducible representation over a linear space L; then for any fJ

U (~) U (fJ) = U (fJ) U (ex)
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The corresponding conserved current is the charge-density current, and point a)
expresses charge conservation. However being this group Abelian, its irreducible
representations are l-dimensional, so that each resulting multiplet contains only
one particle. In this case there are no consequences other than mere charge con-
servation.
Conservation of any additive charge-like quantity (e.g. baryonic number or
hypercharge) can be obtained in this way.
7.4. On the basis of previous considerations it should be olear how things act;ually
go. Strong interactions display additive conservation laws, and moreovar the
great variety of strongly interacting particles (hadrons) scems to divide naturally
into sets of particles with very analoguos properties (for example'!t+,Tr,'!t°; K+,Ko;
p, n and so on). One takes these experimental facts as an indication tha.t the
underlying dynamics possesses a non abelian syrnmetry. group. Then one tries
with some Lie group and compares with experiments the relations which can be
found in the way outlined before.
Imagine a world in which only proton, neutron, ~, '!t-, ~, are present, aS was
the situation at the time when the isotopic spin was introduced.
The mass spectrum of these particles provides a very clear evidence for the
existence of a non Abelian ~ymmetry group, whose representation on one pa.rticle
states splits up into two components, the pion and the nucleon. Inside each
multiplet, particles are distinguished by ouly one quantum number (charge),
so that we are led to a non Abelian Lie group of rank .one. As we will see later
there is only one compact simple group of this kind, Le. SU 2' !ts Lie algebra
is spanned by three elements T l' T 2' T 3' satisfying the product rules of angular
momentum, and its irreducible representations are labeled by a number T~ O
such that:

i
I,
!
li
r

i) 2 T is an integer:

ii) the dimension of the representation is 2 T + 1;

iii) the spectrum of T3 consists of numbers T,T - 1, ''', - T.

We have then to assign the nucleon to the T = 1/2' and the pion to the T = 1
representations. T is called isotopic spin (I-spin) [15].
1£ we assume, as a convention, that particles correspond to eigenstates of T 3'
then Ta has to be connected to the charge operator. In fact the following relation
holds for pions and nucleons :

1
Q - - N = Ta2 (N = baryonic number). (5)

In this context we have two additive conservation laws: charge and baryonic
number. The latteI' is derived as invariance under a gauge group, whereas charge
conservation is inc1uded in isotopic spin conservation. Note that TI and T2 do
not commute neither with Ta noI' with charge, so that they do not correspond
to observable quantities.

so that (Schur's lemma) U(ex) = À(ex) . 1. Rence L has to be one-dimensional. Irreducible
representations are of the form

eia -+ Àk(IX) = eik"', where k is an integer.
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Consider now a 1t - N system. Under SU", it transformb ae an element oi the

t.ensor product oi the I-spin 1 and I-spin l/a representations. It is well known

that this product splits up into an I-spin sIa and an I-spin l/a representation. 1£

we want to study a scattering process of the type

This situation ean be summarized stating that the symmetry group for strong

interactions is the direct product13) of two gauge groups (N and Y-conservation)

times SUa (I-spin conservation). As a consequence N, (T, Ts) and Y quantum

numbers appear in a completely uncorrelat.ed way.

1t + N ~ 1t' + N' (6)
7.5.Unitary symmetry models

In unitary symmetry models one tries to derive Ta and Y conservation from in-

variance under a group which does not break into the direct product SU 2 X U l(Y),

introducing in this way relations between partioles belonging to isomultiplets with

different hypercharge. It is a fact that as yet nobody has sueceeded in extending

such procedure to include N-conservation whioh, a.s before, is derived from a
separat.edgaugegronp[17]. .

The feeling for such 11.higher symmetry is not strongly substantiated at first sight

by experimental evidence. In fact according to results derived in seot. 7.3) par-

ticles would be organized into snpermultiplets, (Le. irrednoible representations)

behaving as elementary objects under strong interaotions; bnt now inside same

supermultiplets there would appear particles differing by Y 80S well 80S by Ta.

This is in conHict with the experimental evidence in that LImlm between particles

differing by Y are quit.e large and not imputable to non strong interactions (for

example mA - mN ~ 175 MeV, mE - mN ::::380 MeV). Rence we must conclude

that the idea of a higher symmetry in the sense above specmed, oannot be literally
applied.
Nevertheless the following interpretation has been proposed: there is a symmetrioal
component in strong interactions which is responsible ofthe groB8 structure of
particles world; in addition there is a weaker oomponent tobetreated a.s a per-
turbation rebponsible ofthedepartures from the exact symmetry. It is understood
that both components are cbarge independent 80Swell 80Sstrangeness oonserving.

we have to evaluate matrix elements of the type:

(1tN IS 11t'N') (7)

where S is invariant under SUa. Writing

I1tN) = C~NIs/a Ts) + CANIl/a Ts)

with the aid of Clebsch-Gordan coefficients, (7) writes as:

C*~, C*'N' (s/a Ts I S I S/2Ts) + C~NCh., (s/2Ts I S 11/2Ts) +
+ CAN CA'N' (l/a Tsl S 11/2 Ts) + C},. C~'I\' (1/2Tsl SII/", Ts). (8)

Using the analysis ofsect. 6.2, we seethat

(s/a Ts I S I3/2Ts) = tJT, T; AS

(1/2 T S I S 11/2 Ts) = tJT, T; A l ,

where AS and Al depend only upon space-time labels. Ali the other matrix ele-
menta vanit:lh. In eonelusion we can express the amplitudes of alI procesSes like
(6) in termsof only two amplitudes which are function of space-time variables,
but do not depend anymore on the charge variables.
It is a well known fact that experimentally at an energy near 190 MeV for the
incident pion the amplitude A s greatly dominates: neglecting A l we find at
that energy a well determined ratio for the following processel:!:

a) 1t+ + p -- 1t++ p
b) 1t- + p ~ 1t- + p
c) 1t- + p ~ 1t° + n.

Rate a: Rate b: Rate c = 9: 1:2 which ia well verified experimentally.
Sinee isotopic Brio has been introduced many other hadrons have been found,
together with another additive conservation law: hypercharge (Y) conservation.
However ali hadrons stilI fit well into isomultiplets when relation (5) is modi-
fied al:!

la) Given two groups Gl and Ga, their Wrect product Gl X GI is defined a.s the set of ordered
pairs (gl' ga)(gi EGi) with the muItiplication law

(gl' ga)Ul' Il) = (gl/i' gala)'

This definition satisfies ali the required axioDl8. Given a representation gi'" U (g() of Gi
on the linear spaces Li' we can find a representation of Gl X GI in the Wrect product 4 X La
as follows

(gl' gl) ... U (gl) Q9 U (ga) = U (gl' ga)

and it can be shown that ali the representations of G = Gl X Ga can be put into this formo
U (gl' ga) is irreducible if and only if U (gl) and U (gl) ara. In our particular case we bave thfl
group

1
Q - -- Y = Ts2

SUa X Ul(N) X Ul(Y)

specified by the triplets (IX,P. g) (IX,P real. g ESUI),
In a space spanned by 2 T + 1 vectors

and alI the experimental findings are consistent with the assumption that strong
interactions are invariant under SU2 [16]. In this eontext, as for baryonic number,
hypercharge conservation is considered to derive from invariance under a gauge
group, quite independently from isotopic spin conservation.

IN, Y; T, Ta). -T;;;;; Ta;;;;;T, N, Y fixed

an irreducible representatiol1 of SUa X Ul(N) X UdY) has the form:

(IX,p, g) ... ei/lN ei«Y D<T)(g)

where D(T) (g) are matrices defining an irreducible representation of SUI,
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It should be noted that the weaker component has not been till now satisfactory
identified. However the idea of a simmetry breaking interaction treated as fÌrst
order perturbation, has provided us with corrections to the predictions derived
from a pure symmetrical model, which are consistent with experimental findings.
7.6. Previous reasoning obviously do not indicate us what the symmetry group
for strong interactions actualIy is. FolIowing generaI requirements however seem
to be quite reasonable, and are usualIy imposed on possible candidates:
i) this group must be a Lie group. In fact we want to identify additive conserved
quantities sueh as Ta and Y with its infinitesimal generators;
ii) is must be compact: this assures that its irreducible unitary representations
ara finite-dimensional, so that wen ean filI up resulting supermultiplets with a
finite number of particles (see sect. 2.2);
ili) it must be semi-simple (see sect. 4.4). This restriction is mainly due to practical
reasons: for semisimple Lie groups in fact there is a complete mathematical theory,
which is not the case non for semisimple groups;
iv) the rank of the group, Le. the rank of its Lie algebra, must be two, because we
require two eonserved commuting quantities Le. Ta and Y;
v) is must contain a subgroup isomorphic to SU2 in order to recover the isotopic
spin symmetry. ActualIy this does not bear any restriction in that any semisimple
Lie group has this property (see later sect. 9.7b).
To construct a concrete theory we need at this point a charaeterization of Lie
groups as well as a classifi.cation of their irreducible representations.
In next sections we wilI study these topics with some detai!.

8. Structure or SemisimpleLie Algebras

In sect. 4 we studied the relatioIls between Lie groups and Lie algebras, and the
conclusion achieved was that there is a one-to-one correspondence between Lie
algebras and Lie groups, so that instead of studying Lie groups one can study the
corresponding Lie algebras and their representations, which is more convenient
by a mathematical point of view.
8.1. We have given in sect. 4.4 the definition of n-dimensional Lie algebra of
rank r. At the same time we noted that the mapping

x -+-ad x X E:t

ad x(y) = [x, y]

is a representation of :t called its regular representation.
In terms of it we can define in :t a bilinear form as folIows

(x, y) = Tr (adx, ady). (1)

Obvious properties are (a = real Ilumber)

(<xx,y) = <X(x, y) ; (1')(x + y, z) = (x, z) = (y, z)

(x, y) = (y, x)

([z, x], y) = - (x, [z, y]).
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The following very important theorem has been proved by Cartan:
:t is semisimple il and only il (x, y) is not degenerate, i.e. il (x, y) = Ofor any y E:t ,
implies x = O.
This criterion is essential in the classical theory of semisimple .Lie algebras. Fur-
thermore the most important results of this theory heavily rest on the possibility
of diagonalizing operators ad x where x runs over the elements of a Cartan sub-
algebra 't' of :t. Now in :t there are surely eigenvectors of ad (x) (in faat for each
element y Ere we have:

adx(y) = [x,y] = O x, Y Ere

I

I

I
~,

f,

so that 't'is an eigenspace of ad (x) belonging to the eigenvalue zero) but in generaI
in:t (which is a real vector space) a complete system 01sueh eigenvectors does not
exists (see later the example reported in sect. 8.7a). The way out 01this difficulty
is to englarge :t to a complex Lie algebra in which structure theory can be easily
carried out. From it, as we shall see later, corresponding results lor the real semi-
simple Lie algebras associated with compact Lie groups can be deduced-

8.2. Complexification

If :t is a realsemisimpleLie algebra,wecan construct its complexextension :te by
choosing a basis x" in :t and considering the set of alIlinear combinations of this
basis, with the product between two elements defined as folIows. li

then

l,"
X = L: ,l"x"

I:
l,"

Y = L:p"x"
I:

(,l",p" = complex numbers)

1M 1M

[x, y] = L: ,l",u/a[x",x/a]= L: ,l/a,u/a°hx.
h,l: 111:8

where Oh are the structure constants relative to the basis choosen in:t. This pro-
duct satisfies condition 4.4ii), and obviously this definition of :t e does not depend
upon the particular basis choosen. In :t e the form (x, y) is simply

(x, y) = L: ,l.,u" (x., x,,) .
h,l:

This form is not degenerate il and only il det (Xl.,XI<)=1=O; this condition is the
same whether we consider :t or :t e, so that il :t is semisimple so is :te. In addition
the rank of :t e is the same of that of :t.

8.3. Structure theory

We will be content here to state without proof alI results relevant for applications.
A complete derivation can be found in the excellent book by JAOOBSON[18]U).

14)An easier treatment ean be found in [19J.See in addition the very readable paper by
RADAR[20J.
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In the folIowing by :t we mean a complex semisimple n-dimensional Lie algebra
of rank r and by q;'one of its Cartan subalgebras. .

I. Any operator ad h, h E q;', is diagonalizable in :t. li hl, . . . h, is a basis in :t, and
eG""Gris a common eigenvector of ad h/s(ad hdeG ,) = £XieG...,G,),we have for
any element h Eq;':

i.,
h = J: ..lihi

i

adheG r = (f ).i£Xi)e ,

so that it sufficies tu sonsider only the diagonalization of operators adhi.
II. h/s can be choosen in such a way that the £Xiare alI real. Upon introducing the
notation £X= (£Xl' . ., £X,)we write

adhie. = £xieG.

The real r-components object £Xis calIed a root vector, or simply a root. :t splits up
into a direct sum of common eigenspaces of adhdi = 1,2. . . r)

:t=:toEB:t.. (2)

where the direct sum runs over alI non vanishing roots and :to is the eigenspace
belonging to the root (O,..., O). Obviously :to contains q;', but a stronger
result holds, namely
III. ':t o = q;', (3)

and furthermore each :tG (£x4= O)is one dimensional.
It follows the there are n - r non zero roots.
We can extend the basis {hi} to a basis in :t, adding to these elements alI the vec-
tors eGwhere £xis a non zero root and e. is a vector spanning :tG.
IV. Consider the restriction of the.trace form (1) to q;'.I t isdetermined by the matrix :

'gii = (hi, h;) = Tr(adhi adh;), i, i = 1,2, . . . r. (4)

In the basis {hi' eG}, the operators

adhi adh;

are diagonal, and have eigenvalues equal to "'i£Xi'Hence

gli = J: £Xi£XI"
(the sum runs over alI roots) (5)

which implies gii to be a real symmetric matrix.
As a consequence gij can be diagonalized with a real orthogonal substitution:

gii = J: AikAjI,gkh = ..ljCiij.
1:h

Upon introducing
hi = 2:Aikhk

1:
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which corresponds to a change of basis in q;', we see that:
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adhieG = (f Aik£Xk)e. = £xieG

and £xial80 are real numbers. Then:

Tr(ad hi adhi) = 2:£Xi£XI = 2:A/kAllIgu = uti = ..liCi/f'" h,1:

Hence

..li =gi/ = 2:(£Xi)II ~ O."

Suppose that for some valueof i, ..li= O. Then £Xi= Ofor any £x,so that

[hi,eG]= O.
Moreover

[hi,hi]= o,

so that adhi is represented in the basis {hi, eG}by the null matrix.
This has the consequence

(hi, x) = O for any x E:t

Le. (by Cartan's criterion) hi = Owhich is excluded.
In conclusion we see that g/f is a non singular, positivedefinite,real matrix. We will
indicate with gii its inverse

2:gikgki = (Jij.
k

With the aid of this metric tensor we define a scalar product between roots:

(£X,fJ) = ~ £xifJ/ = ~ £XifJi = ~ £XifJfgii.. . .,
(6)

The difference between £xi= I gii£xIand £Xican be removed by performing a real
linear transformation on h/s, which reduces gij into the form (J.,. In this basis the
scalar product between roots is written 80S

(£X,fJ) = 2:£XifJi'
i

In the basis {hi, eG}part of the mu)tiplication rules are defined in terms of roots

[hi,hi] = O

[hi. eG]= £xieG.

We wilI see that the same applies to alI multiplication rules between hi and e.,
in the senae that roota determine alI the structure constant relative to the basis
{hi,e.}. This depends on pecuIiar properties of roots, which are the very heart of
structure theory.



322 G.DE FRANCESCHI and L. MAIANI Group Theory and Unitary Symmetry ModelB 323

Properties of roots.

In the following klX and IX+ pare defined as

VII. It is possible to normalize e., e_. so that (e., e_.) = Tr (ade. ade_.) = 1.
With this choice it results:

klX = (kIXI' . . ., klXr)

IX + p = (IXI+ PI' . . ., IXr+ Pr).

À,j= IXi= J.; gii IXj
i

[e., e_.] = J.; giilXjh; = E IXih;.i , (iO)

I V. li IX is a non zero root, then k IX is a root (k = real number) if and only if
k = :J::l,O.

I Rence the n - r non zero roots are distributed in pairs IX, -IX. (From this we see
that n - r is an even integer for any semisimple Lie algebra).
VI. Any two non zero roots IX,p, (IX+ p9=O)uniquelydeterminetwonon negative
integers r, q such that

We note that this normalization determines e. and e_Ilup to factors d., d_ta Buch
that d.d_. = 1.
c) IX + p9=°, IX + p is a root. By eq. (9) and by unidimensionality of l' ta+p it
followB:

[e., ep] = N.pe.+p.
One can show that

p - rlX,p- (r - 1)1X,.. .,p,p +IX,...P + qlX N.,p = Np,_._p= N_.-p.. = -Np. (11)

I are the only non zero roots of the form p + k",. This serie of roots is called the
IX-string containing p. Interchanging IX and p we obtain two other integers q', r'
characterizing the p-string containing IX.
Numbers r, q satisfy the condition:

and in addition, by disposing of factors d., d_. in e., e_., one can assume

N.p = - N p. (12)
In this case

r - q = 2 (IX,P)
(IX, IX)

(IX,P)

(r' - q' = 2 (P, P) . (7)
VIII. N;'{J= q(r ::- 1) (P,P) (13)

-r;;;;q-r;;;;q (- r' ;;;;q' - r' ;;;;q')

where q, and rare the integers determining the IX-Btringcontaining p. We Bee that
when IX+ P is a root, N.p 9= O.
This relation determines N.p up to a sign which must be chosen so to aatisfy (11),
(12).
Collecting all these results, we can write the complete multiplication table relative
to the basis {h;, e., L.}:

Being in addition

we obtain that if IXand P are non zero roots, t,hen

P- 2 (IX,P)
(IX, IX) IX,

2 (IX,P) P
IX- (P,P)

(8) [h;,hj]= °

are non zero roots. The first (second) os obtained by reflecting P(IX)with respect to
the pIane orthogonal to IX(P).
The generaI feature of the multiplication table can be understood in terms of the
following relation:

[h;, e:l:.] = :I: IX;e:l:.

[e., L.] = L.: lXih; = L.: lX;h;gij
j' ii

(14)

adh;[e., ep]= [hi,[e., ep]]= (IX;+ Pi) [e., ep] (9)

J(IX9= -P, IX+ P is not a root) = °[e.,ep]= l . N(IX9= - P, IX+ P IS a root) = .pe.+p.

which is a simple conaequence of Jacobi identity.
We distinguish three caSea:
a) IX + P9=°,IX + Pis not a root.
In this case eq. (9) implies, [e..ep]= O. Otherwise [e.,ep] would be an eigenvec-
tor of hi and IX + P would be a root.
b) IX + P = O.
Rence ad h;[e., e-.] = Oso that [e.,ep]E'6' and we can write:

All structure constants relative to this basis are determined by roots and are all
rea!. In addition a linear non singular transformation on the 11.;8does not change
the forro of these products. In fact if we have

then

h' - "" A ..h . h . - "" - (A-l ) .. h'
i'-":;" '1 l' l-":;" - l' j,

j i

[e., e_.] = 2:),.ihi.
i

[h;, e:l:"J= f A;i [hi' e:l:.] = :J::(f A;; lXi) e:l:. = IX;e:l:.

[ ] - "" i h - "" i (A-l
) h, - "" '1

11.
'

e.,e_1I -..:;.,IX ;-..:;.,IX il I-":;"IX l'
i iJ I
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where
<xi= l:jAijIXj ; IX'1= 2' IXi(A-')il'

i

so that IXiand IXitransform respectively as the covariant and contravariants
components of a vector. gj; transforms as a covariant tensor:

gli =; (h;, hj) = Y.'AilAjj,glt'ti

so that the scalar product between roots is dependent upon the particular basis
choosen in 'C. :From this it follows that although tÌlere are in 'C bases in which IXis

are complex numbers, in any case (IX,IX)is a positive number.
By (14) we see that the roots of a Lie algebra, determine uniquely its structure.
Rcnce a classification of semisimple Lie algebras of rank r is equivalente to find all
sets of r-dimensional real vectors which satisfy V, VI, (7). This is the argument of
next section.
8.4. To begin with we introduce now an ordering between roots in the following
way.
Given two roots IX and p, IX is said to be greater than p if the first non vanishing
component of IX - P= (IX.- P.) is a positive number. In particular a root is
positive if it is greater than zero.
Of course this ordering depends on tne basis choosen in 'C and it is the same that
the ordering of words in a dictionary.

We introduce another useful concept. A root IXis simple if:

a) IXis a positive root,
b) IXcannot be written as sum of two positive roots.

Two important properties of simple roots are nearly immediate.
If IX and {1are simple roots, then: ,

i) IX - P is not a root. If IX- Pwere a positive root, then IXwould be equal to
(IX - (l) + {l, i.e. would not be simple. Conversely if IX - {l were a negative root,
then {l - IXwould be positive, and {l would be equal to ({l - IX) + iX,Le. (l would
not be simple;
ii) (IX,(l) ~ O.By i) if we consider the IX-stringcontaining {l, we see that r = O,so
that

(15)

2 (IX,(l)
--- = r - q = - q ~ O.
(IX,IX) -

The usefulness of considering simple roots lies in the following theorem:
IX. There are exactly r linearly independent simple roots which we will indicate
with IX(I),... IX(r).Furthermore any positive root can be written as a linear com-
bination of simple roots with non negative integers as coefficients.
X. if iX > O is a non simple root, there exists a simple root IX(k)such that IX- IX(k}
is a positive root.
We will see later that properties IX), X) enable ope to construct all roots starting
form Bimple rootl:!. This limits further analysis only to simple roots.
From (7) we can derive very severe restriction on the angle between two roots as
well as on the ratio of their lenghts. In fact it is:

2 (IX,(l) = m,
(IX, iX)

2(iX,fi) = n
-(13,fi)

i

I
~
E
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i.e.

(iX, {l)2 - m . n = cos2 f{i«p~ 1;- 4
if m, n 9= O

(iX,iX) n

({l,(l) = m .
When iX and (l are simple roots, m and n are non positive by 8.4 ii) and furlhermore
iX 04= 13 so that the only possibilities we are 1eft with are:

In addition in the latter case (f{i«p= 90°) neither iX - p,nor 01 + pare roots (see
properties 8.4i, ii).
8.5. On the basis of stated properties of simple roots, we illustrate the classi-
fication of (complex) semisimple Lie algebras.
Let us first examine the case in which simple roots split up into groups of simple
roots, such that any root of each group is orthogonal to alI roota belonging to
different groups, whereas inside each group there is no root orthogonal to alI the
other ones:

IX(I), . . . iX(r,); (l(l), . . . p(r,); y(l), . . . y(r,.)

r1 + r2 + ... + rm = r.

The whole root diagra,m splits up into mutually orthogonal parta IX,. . ., {l. . .; . . .;
y, . . . and in addition IX:J::fi . . .; . . . IX:J::y, . . .; P:1: ì' . .. are not roota, so that
for the corresponding e« ; ep, . . .; ey . .. we have

[e«. ep] = O. [e., ey]= O and so on.

Furthermore one can choose in 'C a basis of hi s which also decomposes into
groups of vectors {hil>,... h~~); h~2) h~~);. .. such that for example

[hi1), ep] = O . . .

[h~l>.ey] = O . . .

Summarizing we see that the basis {hie., e_.} can be decomposed into the direct
sum of bases {h~l),e«, e_«}, {hj2\ ep, e_p}, . . . {h!", ey, e_y} such that alI products
between elements of different groups vanish.
Each linear manifold spanned by such bases is evidently a subalgebra in :t and it
is even an ideaI, so th8.t the existence of roots orthogonal to alI the others implies :t
to be not simple. The converse is also true, i.e.

m, n tp",p (01,IX)/(P, P)

-1 -1 120° 1
-1 -2 135° 2
-1 -3 150° 3
-2 -1 135° l/a
-3 -1 150° l/a

O O 90° arbitrary
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Xl. Necessary as well as sufficient condition for a semisimple Lie algebra to be
simple is that 1 has no simple root orthogonal to aH the others.
From XI and from the previous cç>nsiderations it follows that any semisimple Lie
algebra is the direct sum of simple Lie algebras (Weyl's theorem) so that the classi
D.cation of semisimple Lie algebras is reduced to that of simple one.

Classification of simple Lie algebras

As it should be clear from last section, the problem of determining alI simple Lie
algebras of a fixed rank r, is equivalent to finding aH sets of r simple roots satis-
fying V, VI, (7), and the condition, that no one of them is orthogonal to aH the
others.
The essential results of the structure theory can be formulated as foHowing.
XII. Lenght of simple roots can assume at most two values.
Keeping this in mind, the set of simple roots of a simple Lie algebra can be con-
veniently described in a graphical way introduced by E. B. DYNKIN:
(1) to any simple root we associate a circle:

(2) two circles are connected by one, two, or three lines when the angle between
corresponding roots is respectively 120°, 135°, or 150°.
If the roots are orthogonal, circles are not connected.

(3) Circles corresponding to shorter roots are blackened.

The only simple algebras are then defined by following diagrams (for any fixed r):

These algebras are aH distinct when r ~ 4, wherease we note that:

i) when r = 1 there is only one simple Lie algebra, i.e. Al;
ii) when r = 2, Dynkin diagrams of B2 and O2are identical, Le. B2 and O2,having
same dimensionality and same structure constants are identical;
iii) when r = 3, Aaand Dahave the same Dynkindiagramsothat again Aa = Da.
Apart from these four classes, there are five exceptional Lie algebras, named G2,
F4' E6, E7, Es, defined by the foHowingdiagrams:
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Name DimensionalityDiagram

GI
)

az al

~.
14
52

78

F,

Ea ~
~
~. 248

E7 133

Es

In particular there are only three distinct Lie aJgebras o£ rank two, i.e. A2.
O2 = B2, G2.

8.6. Classification of simple, compact }.ie groups

As said in sect. 7.5 theae groups are of the main concern in unitary s,ywmetry
models. To any of them we can uniquely associate a real Lie algebra :t'r, and it is
remarkable that, as showed by H. WEYL,the compactness of the group reflects in
1 r in that its trace form (1)is negative definite. In view of this circumstance, 1 r itself
is caHed a compact (real) Lie algebra.
To carry out stI;'ucture theory it has been convenient to consider complex Lie al-
gebras. Now, whereas any real algebra 1r uniquely define its complex extension
1 c' the converse is not true, in that the same 1 c can be obtained starting from dif-
ferent real Lie algebras i.e. from different Lie groups (this is for example the case
o£ Ra and of the 3-dimensional Lorentz group, which have the same complex Lie
algebra A]).
However, as again has been showed by H. WEYL, for any semisimple compie x Lie
algebra 1 c' there is essentiaHy one real semisimple compact Lie algebra whose com-
plex extension is 1 c' This has the meaning that in .J.'c there exists a basis such that:
i) aH its structure constants are real;
ii) the real Lie algehra spanned by this basis is compact.
In particular starting from the canonical basis {h" e., L.} it can be easily shown
that the basis

li=-ih,; g. = - (e. - e-.) (16)I. = -i(e~ + e_.);

(IXruns over positive roots)
is compactl6).

. 8.7. Examples
a) SU2
We have seen in aeet. 4.1 that the real Lie algebra associated to SU2(Ra) is span-
ned by three elements Il, 12, la with the product rules:

[1],12] = la, [1a, Il] = 12,[12, la] = Il>

15) To verify that (x, x) < O(x =!=O) whenever x is a real linear combination of tbe elements
(16), one has simply to use the orthogonality relations (k" e,,) = O, (e", ep) = ~-". p which
follow from (l') and from the normalization condition (e", e_,,) = 1. .

:?i Zeitsoh rlft "I!'ortschritte d\\r Physik". Heft 7

Nome of the

I

Dynkin diagram I Dimensionality I Remarks
algebra

Ar I
0---0--...--0 I r(r+ 2) I r 1
a, a2 ilir

Br I 8==0--0-...-0--0 I r(2r + 1) I r2
{J(,r {J(,r-, a2 (J("

Or I O . .........-.. I r(2r + 1) I r2
ar ar-, (J(,2 «-,

ar
Dr I 0--0-... I r(2r - 1) I r3

«--, a2 ar-2 aro'
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This is a 3-dimensional simple Lie algebra of rank 1. For the generai element
x = 2:C,I.(Ci reni) it is easy 110see that Tr(adx adx) < O as it must be, being,
SUz compact. Let us cboose la as tbe element spanning re. Finding roots is equi-
valent to solve tbe following eigenvalue equation (witb /X=1=O):

adIa(x«) = [la, x«] = /XX«,

whicb is equivalent to:

x« = clIl + czIz + cala-

{

Cl = /XCz,

Cz = -/XCI
i.e. /X= xi, C2= T i Cl'

li we introduce the elementa 1:1;= Il :I: iI2 (which are in the complexification of
our algebra!), we bave

[la, 1:1;]= TiI:1;, [l+, L] = - 2iIa

so that, by posing

ha = iIa; , - 't Ie:1;-- :1;2

we obtain the product mIe

[ha, e~] = :I:e~.

We observe tbat TI' (ad ha adha) = 2 so that the metric tensor (which reduces to
a number g) is g = 2. Tbe contravariant component of tbe single positive root ia

1 1
/Xl = - /Xl = 22

so that we have

[
' '

]
1

[
' '

]e+, e- ="2 e+, e-
1

ha=2ha

being (e+, e~) = 1 as one can easily verify.
Root space is one-dimensional, and we have two non zero roots: ::I::1, and one
simple root. Tbe corresponding Dynkin diagram is made of a single circle, so that
this Lie algebra is just Al'
Usually as basis are taken tbe elements

ha, e:1;= V2e~ ((e+, e_) = 2)

whose product mles are
[ha, e:tJ = X e:1;

[e+,e_J = ha

and this we will do in the Iollowing.
b) Recalling the product mlea (14) which are the canonical mica Ior any semi.
simple Lie algebra:l, we see that the elements of:l, defined ae:

h' - 2:,/Xih.,,_-.!
(/X, /X)

e:1;«, --
)'/e:1;«- (/X,/X .
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satisfy the relations:

[h~, e~«] = ::I::e~«

(e~, e~«) = h~.

Hence h~, e~« span a suÌ>algebra in :I which is identical with Al, so that by tbe
considerations made insect. 4.4 we see that tbe compact group associated to any
:I contains subgroups isomorpbic to SU 2' .

~

!
ì
i
I
l

t
i

c) Az

We start Irom the Dynkin diagram: 0--0
From this we see that there are two simple roota /X(I)and /X(2)oi equallenghta,
making, an angle of 120 degrees:

2 (/X(1),/X(2») 2 (/X(1),/X(2»)

(/X(1),/X(I)) = (/X(2),/X(Z» = - 1.

Hence the /X(l) string containing /X(Z)consists of the two elements /X(Z),/X(I) + /X(Z)

and the reversed string contains /X(l)and /X(l)+ /X(Z).Az is 8-dimensional and has
rank 2, so that w,eexpect six non zero roots at ali: in Iact they are

::I::/X(I), X /X(Z), X (/X(I) + /X(Z».

The root diagram is a regular hexagon (se~'fig. 1).
I

0"1

a(1J

0111+0121-

a(zl
alZI

a) b)

Fig. 1. a) Root diagramm 01 SU. b) Root dlagram of (}.

In order to construct explicitly our Lie algebra, we evaluate now covariant com.
ponents of /X'a(/Xi)in a fixed frame of reference in re. Each choice oi the frame wiU
lead us to a well defined set of stmcture constanta in a certain basis {h" e..,e_«}.
The most convenient choice is to refer /X'sto orthogonal axes, Le. to axes sucb
that:

(h" hj) = gij = 2:/Xi /XI = di;'
«

In this caSe /Xi= /Xi'

24*
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In the notation of the fig. 2 (were we have relabeled the roots and for simpIicity
we use lower indices) :

~l = (V~' o)

~2= (2~' ~)

~a = (2 ~3' - ~ )

gii = 2:~i lXi = l5ii
«

1

(1X1'~l) = (1X2,~2) = (lXa' lXa) = 3"

h2

- OJ 02 (~ .~ )Z VJ Z

--a, a, (~,o\-
1{3 ') h,

-02 a (~ .-~ )3 ZV3 Z

Fig. 2.

In terms of these components, we can write the folIowing product rules:

1 1 1
[hl>e:!:d = :f::,r eH' [hl, eH] =:f:: ,;-- eH' [hl, eH] = :f:: ;;= e+a

r3 2r3 2r3-
1 1

[h2,exd = O, [h2,eH] =:f:: ,rq eH', [hl, eH] = =t=_2 ej,a
- 2r3

1
] - - hl,

[el' e_l - y3
1 1 1 1

[e2' e~2] = ,rq hl + _2- ha, [ea, e~a]= --~/= hl - _2 ha.
2r3 2r3

To complete the multiplication table we need the quantitaties N«p. By relations
(11), (12) we see that we can arbitrarily fix only one sign in N.p; for example we can
fix the sign of N2a' Using (13), we have

a q(r + 1) 1 .
N2a = ---2- (lXa,~a) = {3

being q = 1, r = O. We choose
1

-+- ,--

Naa = , Vii
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so that the remaining multiplication rules are

1

[ea, ea] = V6el

1
] -ea

[el' e-a = V6

1

[ea, e-l] = - Y6 e-a

1

[el' e-2]= - Y6 ea

, 1

[ea,e-l] = V6 e-a
The compactbasis is:

1

[e-a, e-a] = V6e-l'

Àa = -i y3hl
Àl = -.i V: (el + e-l)

À4 = - i V: (ea + e-2)

À2 = - V: (el - LI»

À8 = -i V3ha
1/3

Ào= - V 2" (ea - La)'

À6 = - i V: (ea + e-a) À7 = - V: (ea - La).

We note that this basis differs from that given in (16) only by real factors which do>
not affect its compactness and have been introduced in order to have product.
rules of the form

!n
li
li,

1,8

[À" Àk] = 2:f,kmÀm
111

l, k = 1, . . . 8

where f,kmis the completely antisymmetric tensor given in [3]. f,kmdefines the struc-
ture constants of SUa, (see sect. 1.7), which is then the compact group associated
to A2.

d) Calculation of roots

We outline here a method of calculating the roots of a simple Lie algebra based OD
properties IX, X of simple roots.
If IXis a positive root we will say that IXIies in the nth level when:

IX = 2:kjlX(i),
i

n = 2:ki.
i

Property X) makes us sure that any root of the nth level is obtained by adding a
simple root to some positive root belonging to the (n - l)th leveI. In particular if
the nth level is empty, alI the successive levels are also empty.
Suppose we know alI roots up to the nth level, and let ~ = 2:kilXU)belong to such

i
leveI. Then we can ascertain whether ~ - IIX(k), for any non negative integer l,
(lX(k)is a simple root) is a rOQt or not, so that we know the number r, relative to the
lX(k)-stringcontaining IX.Furthermore:

2(~, lX(k» 2(1X(i), lX(k»
r - q = 1_.Ik\ _11.\\= 2: kj _. -

i
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and the right hand side oi this equation is a known number (2 (<x(i),<x(!.:»/(<x(k),<x(k»)
is known from Dynkin diagram). In this way we obtain q, and if q > O, <X+ <x(k)is
a root of the (n + l)th leveI. With this procedure, by (X), varying <Xand <x(!.:)we
obtain alI the (n + l)th level roots. Since we already know the roots of thc 1th
level from Dynkin's diagram (Le. the simple roots) and in addition .x(i) - <X(!.:)is
never a root when .x(i)and .x(k)are simple, this method can be used as a recurrence
procedure to find alI positive roots of the given algebra.
Let UBtry with Gi. The Dynkin diagram is:

8.8. Compact groups associated to classical simple Lie algebras:

Cartan's
denominatipn

ol .ff'
Compaot group G assooiated to L

Dimension ol G=
dimensionol .ff'

A, SU'H: unitary unimodular oomplex matrioes
" in (l + 1)-dimensiolUl .

, r,',)

°Zl+l: real orthogonal group in (2l + 1) di-
mensions

l(l + 2)

B, l(2l + 1)
(

(X, tXz
o, Sp(2l) :unitary 2l-dimensional matrioes leaving

invariant a non singular antisymmetrio
matrÌx l:

l(2l + 1)
:and from (15) we obtain:

2 (<Xl><Xi)= - 1, 2 (<Xl'<Xi)= - 3.
(<X)' £xl) (£X2' £Xi)

UTIU = l

(sympletio group)
1St level: £Xl' <X2

2nd level: £Xl+ .x2

3ro level: 2 £Xl+ £Xiis not a root, because:

D, OZ,: real orthogonal group in 2l dimensions l(2l - 1)

9. RepresentatioD8or Semisimple Lie AIgebras

2 (.xl + <Xi'£xd = 2 -- 1 = r - q;
(£Xl' .xl)

but r = 1, so that q = O.

9.1. We recall here that by representation of a Lie algebra into a complex linear
space L we mean a linear mapping x -+ T (x) where x E1, T (x) is a linear
operator in L, satisfying the condition:

£Xl+ 2.x2 is a root. T([x, y]) = T(x) T(y) - T(y) T(x).

4th level: 2.x1 + 2 £Xi= 2 (<Xl + /Xi) is not a root (by V), We will treat here only finite dimensional representations, for which the follo-
wing Weyl's theorem applies:
I. Any finite-dimensional representation of a semisimple Lie algebra is completely
reduciblc. Bence we can limit ourselves to irreducible representations.
Chosen a basis {hi' e., e_.} in 1, we wiIl indicate with {Hi' E., E-a} the correspon-
ding operators in any given representation.
II. It is possible to choose among equivalent representation, a particular one in a
Hilbert space, in which: Ht = Hi and E: = E-a 16).

.xl + 3 <X2 is a root

th I . . 2(.x1+3/X2,.xl)
5 leve: 2 <Xl+ 3 <X218a root: In fact ) = -1 = r - q(<Xl' /Xl

and r = O, so that q = 1

. 2(<XI+3<X2'<X2)

/Xl + 4 <Xi18not a root : ( ) = 3 = r - q<X2, <X2

2 <Xl + 4.x2 = 2(CXI + 2<X2)is not a root;

16)A representation of 1 gives us a representation of the assooiated oompact real Lie algebra,
whioh in turn generat,es a representation of the oorresponding compact group. CalI it W (g).
From what we said in sect. 3.4 we can always change W (g) by an equivalence transformation
(W(g) -+ W'(g) = A W(g)A-) so to obtain an unitary representation.
Under the same equivalence transformation the operators Fi' Fa. Ga representing the com.
paot basis (16) go iuto the operators:

Fi = A FiA-) etc.

whiohare antihermitian,so that Ili' Ha,E-a transforminto operatorssatyslying:

but r = 3 so that q = O.

6th level: 3 <Xl+ 3 <X2 = 3 (<x) + <X2)is uot a root

so that wc end with 5th level, and the positive roots are

<Xl; <X2;<Xl + <X2; <Xl + 2<X2; <Xl + 3<Xi; 2<XI + 3<X2'

(Hi)+ = Hi. (E~)+= H~a'

This result is not essential from a mathematical point ol view, in that what really mattere is
the possibility oi diagonalizing the operators Hi's which is assured by the fact that H;'s re.
present a Cartan subalgebll'a. ' (Continued on page 334.)The corresponding root diagram is reported in fig. 1.


